zoukankan      html  css  js  c++  java
  • hdu4273Rescue(三维凸包重心)

    链接

    模板题已不叫题。。

    三维凸包+凸包重心+点到平面距离(体积/点积)  体积-->混合积(先点乘再叉乘)

      1 #include <iostream>
      2 #include<cstdio>
      3 #include<cstring>
      4 #include<algorithm>
      5 #include<stdlib.h>
      6 #include<vector>
      7 #include<cmath>
      8 #include<queue>
      9 #include<set>
     10 using namespace std;
     11 #define N 510
     12 #define INF 1e20
     13 #define max(a,b) (a>b?a:b)
     14 #define min(a,b) (a<b?a:b)
     15 #define eps 1e-8
     16 #define MAXV 505
     17 const double pi = acos(-1.0);
     18 const double inf = ~0u>>2;
     19 //三维点
     20 struct point3
     21 {
     22     double x, y,z;
     23     point3() {}
     24     point3(double _x, double _y, double _z): x(_x), y(_y), z(_z) {}
     25     point3 operator +(const point3 p1)
     26     {
     27         return point3(x+p1.x,y+p1.y,z+p1.z);
     28     }
     29     point3 operator - (const point3 p1)
     30     {
     31         return point3(x - p1.x, y - p1.y, z - p1.z);
     32     }
     33     point3 operator * (point3 p)
     34     {
     35         return point3(y*p.z-z*p.y, z*p.x-x*p.z, x*p.y-y*p.x);    //叉乘
     36     }
     37     point3 operator *(double d)
     38     {
     39         return point3(x*d,y*d,z*d);
     40     }
     41     point3 operator /(double d)
     42     {
     43         return point3(x/d,y/d,z/d);
     44     }
     45     double operator ^ (point3 p)
     46     {
     47         return x*p.x+y*p.y+z*p.z;    //点乘
     48     }
     49 
     50 } pp[N],rp[N];
     51 struct point
     52 {
     53     double x,y;
     54     point(double x=0,double y=0):x(x),y(y) {}
     55     point operator -(point b)
     56     {
     57         return point(x-b.x,y-b.y);
     58     }
     59 } p[N],ch[N];
     60 struct _3DCH
     61 {
     62     struct fac
     63     {
     64         int a, b, c;    //表示凸包一个面上三个点的编号
     65         bool ok;        //表示该面是否属于最终凸包中的面
     66     };
     67 
     68     int n;    //初始点数
     69     point3 P[MAXV];    //初始点
     70 
     71     int cnt;    //凸包表面的三角形数
     72     fac F[MAXV*8]; //凸包表面的三角形
     73 
     74     int to[MAXV][MAXV];
     75     double vlen(point3 a)
     76     {
     77         return sqrt(a.x*a.x+a.y*a.y+a.z*a.z);
     78     }  //向量长度
     79     double area(point3 a, point3 b, point3 c)
     80     {
     81         return vlen((b-a)*(c-a));
     82     }    //三角形面积*2
     83     double volume(point3 a, point3 b, point3 c, point3 d)
     84     {
     85         return (b-a)*(c-a)^(d-a);    //四面体有向体积*6
     86     }
     87     //正:点在面同向
     88     double point3of(point3 &p, fac &f)
     89     {
     90         point3 m = P[f.b]-P[f.a], n = P[f.c]-P[f.a], t = p-P[f.a];
     91         return (m * n) ^ t;
     92     }
     93     void deal(int p, int a, int b)
     94     {
     95         int f = to[a][b];
     96         fac add;
     97         if (F[f].ok)
     98         {
     99             if (point3of(P[p], F[f]) > eps)
    100                 dfs(p, f);
    101             else
    102             {
    103                 add.a = b, add.b = a, add.c = p, add.ok = 1;
    104                 to[p][b] = to[a][p] = to[b][a] = cnt;
    105                 F[cnt++] = add;
    106             }
    107         }
    108     }
    109     void dfs(int p, int cur)
    110     {
    111         F[cur].ok = 0;
    112         deal(p, F[cur].b, F[cur].a);
    113         deal(p, F[cur].c, F[cur].b);
    114         deal(p, F[cur].a, F[cur].c);
    115     }
    116     bool same(int s, int t)
    117     {
    118         point3 &a = P[F[s].a], &b = P[F[s].b], &c = P[F[s].c];
    119         return fabs(volume(a, b, c, P[F[t].a])) < eps && fabs(volume(a, b, c, P[F[t].b])) < eps && fabs(volume(a, b, c, P[F[t].c])) < eps;
    120     }
    121     //构建三维凸包
    122     void construct()
    123     {
    124         cnt = 0;
    125         if (n < 4)
    126             return;
    127         bool sb = 1;
    128         //使前两点不公点
    129         for (int i = 1; i < n; i++)
    130         {
    131             if (vlen(P[0] - P[i]) > eps)
    132             {
    133                 swap(P[1], P[i]);
    134                 sb = 0;
    135                 break;
    136             }
    137         }
    138         if (sb)return;
    139         sb = 1;
    140         //使前三点不公线
    141         for (int i = 2; i < n; i++)
    142         {
    143             if (vlen((P[0] - P[1]) * (P[1] - P[i])) > eps)
    144             {
    145                 swap(P[2], P[i]);
    146                 sb = 0;
    147                 break;
    148             }
    149         }
    150         if (sb)return;
    151         sb = 1;
    152         //使前四点不共面
    153         for (int i = 3; i < n; i++)
    154         {
    155             if (fabs((P[0] - P[1]) * (P[1] - P[2]) ^ (P[0] - P[i])) > eps)
    156             {
    157                 swap(P[3], P[i]);
    158                 sb = 0;
    159                 break;
    160             }
    161         }
    162         if (sb)return;
    163         fac add;
    164         for (int i = 0; i < 4; i++)
    165         {
    166             add.a = (i+1)%4, add.b = (i+2)%4, add.c = (i+3)%4, add.ok = 1;
    167             if (point3of(P[i], add) > 0)
    168                 swap(add.b, add.c);
    169             to[add.a][add.b] = to[add.b][add.c] = to[add.c][add.a] = cnt;
    170             F[cnt++] = add;
    171         }
    172         for (int i = 4; i < n; i++)
    173         {
    174             for (int j = 0; j < cnt; j++)
    175             {
    176                 if (F[j].ok && point3of(P[i], F[j]) > eps)
    177                 {
    178                     dfs(i, j);
    179                     break;
    180                 }
    181             }
    182         }
    183         int tmp = cnt;
    184         cnt = 0;
    185         for (int i = 0; i < tmp; i++)
    186         {
    187             if (F[i].ok)
    188             {
    189                 F[cnt++] = F[i];
    190             }
    191         }
    192     }
    193     //表面积
    194     double area()
    195     {
    196         double ret = 0.0;
    197         for (int i = 0; i < cnt; i++)
    198         {
    199             ret += area(P[F[i].a], P[F[i].b], P[F[i].c]);
    200         }
    201         return ret / 2.0;
    202     }
    203     double ptoface(point3 p,int i)
    204     {
    205         return fabs(volume(P[F[i].a],P[F[i].b],P[F[i].c],p)/vlen((P[F[i].b]-P[F[i].a])*(P[F[i].c]-P[F[i].a])));
    206     }
    207     //体积
    208     double volume()
    209     {
    210         point3 O(0, 0, 0);
    211         double ret = 0.0;
    212         for (int i = 0; i < cnt; i++)
    213         {
    214             ret += volume(O, P[F[i].a], P[F[i].b], P[F[i].c]);
    215         }
    216         return fabs(ret / 6.0);
    217     }
    218     //表面三角形数
    219     int facetCnt_tri()
    220     {
    221         return cnt;
    222     }
    223 
    224     //表面多边形数
    225     int facetCnt()
    226     {
    227         int ans = 0;
    228         for (int i = 0; i < cnt; i++)
    229         {
    230             bool nb = 1;
    231             for (int j = 0; j < i; j++)
    232             {
    233                 if(same(i, j))
    234                 {
    235                     nb = 0;
    236                     break;
    237                 }
    238             }
    239             ans += nb;
    240         }
    241         return ans;
    242     }
    243     //三维凸包重心
    244     point3 barycenter()
    245     {
    246         point3 ans(0,0,0),o(0,0,0);
    247         double all=0;
    248         for(int i=0;i<cnt;i++)
    249         {
    250             double vol=volume(o,P[F[i].a],P[F[i].b],P[F[i].c]);
    251             ans=ans+(o+P[F[i].a]+P[F[i].b]+P[F[i].c])/4.0*vol;
    252             all+=vol;
    253         }
    254         ans=ans/all;
    255         return ans;
    256     }
    257 
    258 }hull;
    259 
    260 void solve()
    261 {
    262     double ans = INF;
    263     int i;
    264     int cnt = hull.cnt;
    265     point3 pp = hull.barycenter();
    266     for(i = 0 ; i < cnt ; i++)
    267     {
    268         ans = min(ans,hull.ptoface(pp,i));
    269     }
    270     printf("%.3f
    ",ans);
    271 }
    272 int main()
    273 {
    274     int n,i;
    275     while(scanf("%d",&n)!=EOF)
    276     {
    277         hull.n = n;
    278         for(i = 0 ; i < n; i++)
    279         {
    280             scanf("%lf%lf%lf",&pp[i].x,&pp[i].y,&pp[i].z);
    281             hull.P[i] = pp[i];
    282         }
    283         hull.construct();
    284         solve();
    285     }
    286 }
    View Code
  • 相关阅读:
    474 Ones and Zeroes 一和零
    473 Matchsticks to Square 火柴拼正方形
    472 Concatenated Words 连接的单词
    Django 视图系统
    Django 路由系统
    Django 框架基础
    jQuery
    JavaScript- BOM, DOM
    CSS概念,引入,选择器
    HTML
  • 原文地址:https://www.cnblogs.com/shangyu/p/3956717.html
Copyright © 2011-2022 走看看