zoukankan      html  css  js  c++  java
  • o2o优惠券使用预测

    前沿:

    这是天池的一个新人实战塞题目,原址 https://tianchi.aliyun.com/getStart/information.htm?spm=5176.100067.5678.2.e1321db7ydQmSB&raceId=231593 ,下文会分析以下几个过程。

    1.数据预处理

    2.特征的选取

    3.算法的说明

    4.结果分析

    5.其他

    第一部分:数据预处理

    原始数据可以从上边链接中下载,拿到.csv文件,可以使用pandas处理。

    比如:

    dfoff = pd.read_csv('ccf_offline_stage1_train.csv', keep_default_na=False)

    参数  keep_default_na默认为True,当为True时,文件中的'null'则读物Nan, 此时不能使用  dfoff['Date'] != 'null' 判断,为了对‘null’可以使用 “==”,“!=”,此处设置 keep_default_na=False 。

    我们需要得出优惠券与购买的关联数据,以此得出Label。

    有以下4中组合:

      有优惠券,购买商品条数
      无优惠券,购买商品条数
      有优惠券,不购买商品条数
      无优惠券,不购买商品条数

    代码如下:
    print('有优惠券,购买商品条数', dfoff[(dfoff['Date_received'] != 'null') & (dfoff['Date'] != 'null')].shape[0])
    print('无优惠券,购买商品条数', dfoff[(dfoff['Date_received'] == 'null') & (dfoff['Date'] != 'null')].shape[0])
    print('有优惠券,不购买商品条数', dfoff[(dfoff['Date_received'] != 'null') & (dfoff['Date'] == 'null')].shape[0])
    print('无优惠券,不购买商品条数', dfoff[(dfoff['Date_received'] == 'null') & (dfoff['Date'] == 'null')].shape[0])
    

      文件中有买多少减多少,需要格式化为折扣率,距离门店格式化为数字等

    def convertRate(row):
        if row == 'null':
            return 1.0
        elif ':' in row:
            rows = row.split(':')
            return 1.0 - float(rows[1])/float(rows[0])
        else:
            return float(row)
    
    def getDiscountMan(row):
        if ':' in row:
            rows = row.split(':')
            return int(rows[0])
        else:
            return 0
    
    def getDiscountJian(row):
        if ':' in row:
            rows = row.split(':')
            return int(rows[1])
        else:
            return 0
    
    def getWeekday(row):
        if row == 'null':
            return row
        else:
            return date(int(row[0:4]), int(row[4:6]), int(row[6:8])).weekday() + 1
    
    
    def processData(df):
        df['discount_rate'] = df['Discount_rate'].apply(convertRate)
        df['discount_man'] = df['Discount_rate'].apply(getDiscountMan)
        df['discount_jian'] = df['Discount_rate'].apply(getDiscountJian)
        df['discount_type'] = df['Discount_rate'].apply(getDiscountType)
        print(df['discount_rate'].unique())
    
        df['distance'] = df['Distance'].replace('null', -1).astype(int)
        return df
    

      调用 dfoff = processData(dfoff) 即可格式化以上信息。

    注意代码中apply()函数,apply()函数是pandas里面所有函数中自由度最高的函数。该函数如下:

    DataFrame.apply(func, axis=0, broadcast=False, raw=False, reduce=None, args=(), **kwds)

    对收到优惠券日期处理:

    date_received = dfoff['Date_received'].unique()  #.unique()删除重复项
    date_received = sorted(date_received[date_received != 'null']  #排序
    print('优惠券收到日期从',date_received[0],'到', date_received[-1])  #输出最小日期和最大日期
    

    同样对于消费日期处理:

    date_buy = dfoff['Date'].unique()
    date_buy = sorted(date_buy[date_buy != 'null'])
    date_buy = sorted(dfoff[dfoff['Date'] != 'null']['Date'])
    print('消费日期从', date_buy[0], '到', date_buy[-1])
    

     

    将发放的优惠券与被使用的优惠券画图:

    couponbydate = dfoff[dfoff['Date_received'] != 'null'][['Date_received', 'Date']].groupby(['Date_received'], as_index=False).count()
    couponbydate.columns = ['Date_received','count']
    buybydate = dfoff[(dfoff['Date'] != 'null') & (dfoff['Date_received'] != 'null')][['Date_received', 'Date']].groupby(['Date_received'], as_index=False).count()
    buybydate.columns = ['Date_received','count']
    
    sns.set_style('ticks')
    sns.set_context("notebook", font_scale= 1.4)
    plt.figure(figsize = (12,8))
    date_received_dt = pd.to_datetime(date_received, format='%Y%m%d')
    
    plt.subplot(211)
    plt.bar(date_received_dt, couponbydate['count'], label = 'number of coupon received' )
    plt.bar(date_received_dt, buybydate['count'], label = 'number of coupon used')
    plt.yscale('log')
    plt.ylabel('Count')
    plt.legend()
    
    plt.subplot(212)
    plt.bar(date_received_dt, buybydate['count']/couponbydate['count'])
    plt.ylabel('Ratio(coupon used/coupon received)')
    plt.tight_layout()
    plt.show()
    

      得到一幅图:

    第二部分:特征的选取

    第三部分:算法的说明

    第四部分:结果分析

    第五部分:其他

  • 相关阅读:
    LeetCode-Maximum Gap
    LintCode-Implement Queue by Stacks
    LintCode-Search Range in Binary Search Tree
    LintCode-BackPack II
    LintCode-Minimum Subarray
    LintCode-Sort Letters by Case
    LintCode-Longest Common Subsequence
    POJ 2226
    POJ 2724
    POJ 3692
  • 原文地址:https://www.cnblogs.com/shanlizi/p/9174726.html
Copyright © 2011-2022 走看看