zoukankan      html  css  js  c++  java
  • poj_2115C Looooops(模线性方程)

    题目链接:http://poj.org/problem?id=2115

    C Looooops
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 22912   Accepted: 6293

    Description

    A Compiler Mystery: We are given a C-language style for loop of type 
    for (variable = A; variable != B; variable += C)
    
    statement;

    I.e., a loop which starts by setting variable to value A and while variable is not equal to B, repeats statement followed by increasing the variable by C. We want to know how many times does the statement get executed for particular values of A, B and C, assuming that all arithmetics is calculated in a k-bit unsigned integer type (with values 0 <= x < 2k) modulo 2k

    Input

    The input consists of several instances. Each instance is described by a single line with four integers A, B, C, k separated by a single space. The integer k (1 <= k <= 32) is the number of bits of the control variable of the loop and A, B, C (0 <= A, B, C < 2k) are the parameters of the loop. 

    The input is finished by a line containing four zeros. 

    Output

    The output consists of several lines corresponding to the instances on the input. The i-th line contains either the number of executions of the statement in the i-th instance (a single integer number) or the word FOREVER if the loop does not terminate. 

    Sample Input

    3 3 2 16
    3 7 2 16
    7 3 2 16
    3 4 2 16
    0 0 0 0
    

    Sample Output

    0
    2
    32766
    FOREVER

    Source

    题意:定义一个循环for(int i = A ; i!=B ; i= (i+c)%2^k)

    求循环执行的次数,如果死循环输出forever;

    题解:上面的循环可以写成(A+C*X)%2^k=B%2^k

    上式可以写成 C*X%2^k=B-A%2^k;

    这样就转化成了一个模线性方程。

    模线性方程有下列定理

    数论:

    求解模线性方程

    • 定理:方程ax=b(mod n)对于未知量x有解,当且仅当gcd(a, n)|b
    • 定理:方程ax=b(mod n)或者对模n有d个不同的解,其中d=gcd(a, n)或者无解。
    • 定理:设d=gcd(a, n),假定对整数x’和y’,有d=ax’+ny’。如果d|b,则方程ax=b(modn)有一个解的值为x0,满足x0=x’(b/d)mod n
    • 定理:假设方程ax=b(mod n)有解(即有d|b,其中d=gcd(a, n)),x0是该方程的任意一个解,则该方程对模n恰有d个不同的解,分别为:xi=x0+i(n/d)(i = 1, 2, …, d-1)
    • int Modular_Linear(int a,int b,int n)
      {
         int d,x,y,x0,i;
         d=Extend_Euclid(a,n,x,y);
         if(b%d==0)
         {
             x0=(x*(b/d))%n;
             if(x0<n)x0+=n;
             for(i=0;i<d;i++)cout<<(x0+i*n/d)%n<<endl;
         }
         return 0;
      }
    •  

     注意:这个题要求如果有解的话输出最小解,一般在处理最小解的时候用(x%mod+mod)%mod

     1 //求模线性方程
     2 #include<cstdio>
     3 #include<cstring>
     4 #include<algorithm>
     5 #include<cmath>
     6 using namespace std;
     7 #define ll long long
     8 
     9 ll gcd(ll a, ll b, ll &x, ll &y)
    10 {
    11     if(b==0) {
    12         x = 1;
    13         y = 0;
    14         return a;
    15     }
    16     ll ans = gcd(b,a%b,x,y);
    17     ll tx = x;
    18     x = y;
    19     y = tx-a/b*y;
    20     return ans;
    21 }
    22 int main()
    23 {
    24     ll a,b,c,k;
    25     while(~scanf("%lld%lld%lld%lld",&a,&b,&c,&k))
    26     {
    27         if(a==b&&b==c&&c==k&&k==0) return 0;
    28         ll M = 1LL << k;
    29         b = b-a;
    30         ll m,n;
    31         ll d = gcd(c,M,m,n);
    32         if(b%d!=0) {
    33             puts("FOREVER");
    34             continue;
    35         }
    36         ll ans = (m*(b/d))%M;
    37         ans = (ans%(M/d)+M/d)%(M/d);
    38         printf("%lld
    ",ans);
    39     }
    40     return 0;
    41 }
    42 /*
    43 void gcd(LL a, LL b, LL &d, LL &x, LL &y) {
    44     if(!b) { d = a; x = 1; y = 0; }
    45     else { gcd(b, a%b, d, y, x); y-= x*(a/b); }
    46 }
    47 */
  • 相关阅读:
    [数据结构]图的DFS和BFS的两种实现方式
    [算法]两个栈实现一个队列
    [数据结构]手动实现队列
    [数据结构]手动实现栈
    [数据结构]手动实现单链表
    Hive分组取Top K数据
    HBase解决海量图片存储方案
    非结构化数据存储方案
    头条面试题之实现两个线程轮流打印字符串
    [算法]最大连续子数组和,最长重复子串,最长无重复字符子串
  • 原文地址:https://www.cnblogs.com/shanyr/p/5675242.html
Copyright © 2011-2022 走看看