zoukankan      html  css  js  c++  java
  • MapReduce好友推荐案例

    MapReduce好友推荐案例

    好友序列

    tom hello hadoop cat
    world hadoop hello hive
    cat tom hive
    mr hive hello
    hive cat hadoop world hello mr
    hadoop tom hive world
    hello tom world hive mr
    

    第一个表示用户,第二个开始就是联系人

    tom的联系人有hello、hadoop、cat三个兰溪人,我们需要为用户提供联系人。

    分析可知:

    我们需要在map阶段根据用户的直接联系和间接关系列举出来,map输出的为tom:hadoop 1,hello:hadoop 0,0代表间接关系,1代表直接关系。在Reduce阶段把直接关系的人删除掉,再输出。

    RecomFriendApp

    package icu.shaoyayu.hadoop.mr.buddy;
    
    import icu.shaoyayu.hadoop.mr.buddy.mapper.RecomFriendMapper;
    import icu.shaoyayu.hadoop.mr.buddy.reduce.RecomFriendReduce;
    import org.apache.hadoop.conf.Configuration;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.io.IntWritable;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapreduce.Job;
    import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
    import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
    
    import java.io.IOException;
    
    /**
     * @author 邵涯语
     * @date 2020/4/18 23:33
     * @Version :
     */
    public class RecomFriendApp {
    
        public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
    
            //获取配置
            Configuration configuration = new Configuration(true);
    
            //获取作业
            Job job = Job.getInstance(configuration);
            job.setJarByClass(RecomFriendApp.class);
            //配置
            //map环节
            job.setMapperClass(RecomFriendMapper.class);
            job.setMapOutputKeyClass(Text.class);
            job.setMapOutputValueClass(IntWritable.class);
            //Reduce环节
            job.setReducerClass(RecomFriendReduce.class);
            //设置作业输入输出的路径
    
            Path inputPath = new Path("/data/friend/input/");
            FileInputFormat.setInputPaths(job,inputPath);
    
            Path outputPath = new Path("/data/friend/output/");
            if (outputPath.getFileSystem(configuration).exists(outputPath)){
                outputPath.getFileSystem(configuration).delete(outputPath,true);
            }
            FileOutputFormat.setOutputPath(job,outputPath);
            //提交作业
            job.waitForCompletion(true);
            
        }
    }
    

    RecomFriendMapper

    package icu.shaoyayu.hadoop.mr.buddy.mapper;
    
    import org.apache.hadoop.io.IntWritable;
    import org.apache.hadoop.io.LongWritable;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapreduce.Mapper;
    import org.apache.hadoop.util.StringUtils;
    
    import java.io.IOException;
    
    /**
     * @author 邵涯语
     * @date 2020/4/18 23:43
     * @Version :
     */
    public class RecomFriendMapper extends Mapper<LongWritable, Text,Text, IntWritable> {
    
        private Text mKey = new Text();
        private IntWritable mValue = new IntWritable();
    
        /**
         * 重写map方法
         * @param key
         * @param value
         * @param context
         * @throws IOException
         * @throws InterruptedException
         */
        @Override
        protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
    
            //tom hello hadoop cat
            String[] sts = StringUtils.split(value.toString(),' ');
    
            for (int i = 1; i < sts.length; i++) {
                mKey.set(compareTwoStrings(sts[0],sts[i]));
                mValue.set(0);
                context.write(mKey,mValue);
                for (int j = i+1; j < sts.length; j++) {
                    mKey.set(compareTwoStrings(sts[i],sts[j]));
                    mValue.set(1);
                    context.write(mKey,mValue);
                }
            }
    
        }
    
        private static String compareTwoStrings(String val1,String val2){
            if (val1.compareTo(val2) < 0){
                return val1+":"+val2;
            }
            return val2+":"+val1;
        }
    
    
    }
    

    RecomFriendReduce

    package icu.shaoyayu.hadoop.mr.buddy.reduce;
    
    import org.apache.hadoop.io.IntWritable;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapreduce.Reducer;
    
    import java.io.IOException;
    
    /**
     * @author 邵涯语
     * @date 2020/4/18 23:46
     * @Version :
     */
    public class RecomFriendReduce extends Reducer<Text, IntWritable,Text,IntWritable> {
    
        private IntWritable mVale = new IntWritable();
    
        /**
         * reduce阶段
         * @param key
         * @param values
         * @param context
         * @throws IOException
         * @throws InterruptedException
         */
        @Override
        protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
            //tom:hello 0
            //tom:hello 1
            //tom:hello 0
            int flg = 0;
            int sum = 0;
            for (IntWritable value : values) {
                if (value.get() == 0){
                    flg = 1;
                }
                sum+= value.get();
            }
            if (flg==0){
                mVale.set(sum);
                context.write(key,mVale);
            }
        }
    
    }
    
    记得加油学习哦^_^
  • 相关阅读:
    javaEE中的字符编码问题
    java泛型中<?>和<T>有什么区别?
    list去重,String[]去重,String[]去空,StringBuffer去重,并且以','隔开,list拆分
    字符串转驼峰
    动态生成16位不重复随机数、随机创建2位ID
    POI不同浏览器导出名称处理
    图片转流
    RSA加密解密
    idea 使用在java 包下的ftl、xml 文件编译问题
    深入理解SQL的四种连接-左外连接、右外连接、内连接、全连接
  • 原文地址:https://www.cnblogs.com/shaoyayu/p/13434027.html
Copyright © 2011-2022 走看看