A 跑步
题目大意 : 一个矩阵,求出从每个位置走到左上角可以获得的最大获利的和,动态修改,强制在线
-
首先容易求出每个点(i,j)到(1,1)的最大获利f[i][j]
-
每次只会改变一,所以f[i][j]如果要么改变一,要么不变,而且对于第i行改变的区域 (l_i,r_i) 具有单调性,也就是说一定有 (l_{i-1}leq l_i, r_{i-1}leq r_i)
-
有单调性就可以双指针了,给一个区间的f值同时加一,可以用差分,树状数组维护差分序列,这样就可以通过上面点的值和左面的之判断这个点的f值是否改变了
Code
Show Code
#include <cstdio>
#include <algorithm>
using namespace std;
const int N = 2005;
int read(int x = 0, int f = 1, char c = getchar()) {
for (; c < '0' || c > '9'; c = getchar()) if (c == '-') f = -1;
for (; c >='0' && c <='9'; c = getchar()) x = x * 10 + c - '0';
return x * f;
}
int n, a[N][N], f[N][N], t[N][N];
long long ans;
void Add(int op, int x, int w) {
for (; x <= n; x += x & -x) t[op][x] += w;
}
int Ask(int op, int x, int w = 0) {
for (; x; x -= x & -x) w += t[op][x];
return w;
}
bool Judge(int x, int y) {
return Ask(x, y) == max(Ask(x-1, y), Ask(x, y-1)) + a[x][y];
}
int main() {
n = read();
for (int i = 1; i <= n; ++i) {
for (int j = 1; j <= n; ++j) {
a[i][j] = read();
f[i][j] = max(f[i-1][j], f[i][j-1]) + a[i][j];
ans += f[i][j];
Add(i, j, f[i][j] - f[i][j-1]);
}
}
for (int i = 1; i <= n; ++i) t[i][n+1] = 1e9;
printf("%lld
", ans);
for (int k = 1; k <= n; ++k) {
char c; scanf(" %c", &c);
int x = read(), y = read(), w = c == 'U' ? 1 : -1;
int l = y, r = y; a[x][y] += w;
for (int i = x; i <= n; ++i) {
while (l <= n && Judge(i, l)) l++;
Add(i, l, w); Add(i, r+1, -w); ans += w * (r - l + 1);
while (r < n && !Judge(i, r+1)) r++, Add(i, r, w), Add(i, r+1, -w), ans += w;
}
printf("%lld
", ans);
}
return 0;
}
B 算术
题目大意 : 问一个大整数开k次方后是否为整数
- 随机个P,做k次剩余
Code
Show Code
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
char c[1000005];
int len, k, M;
bool Prime(int x) {
for (int i = 2; i * i <= x; ++i)
if (x % i == 0) return 0;
return 1;
}
int Pow(int a, int k, int ans = 1) {
for (; k; k >>= 1, a = 1ll * a * a % M)
if (k & 1) ans = 1ll * ans * a % M;
return ans;
}
bool Judge() {
for (int i = 1; i <= 20; ++i) {
if (!Prime(M = i * k + 1)) continue;
int s = 0;
for (int j = 1; j <= len; ++j)
s = (s * 10ll + c[j] - '0') % M;
if (Pow(s, i) > 1) return 0;
}
return 1;
}
int main() {
int T; scanf("%d", &T);
while (T--) {
scanf("%s%d", c + 1, &k);
len = strlen(c + 1);
puts(Judge() ? "Y" : "N");
}
return 0;
}
C 求和 (Unaccepted)
题目大意 :
Code
Show Code