zoukankan      html  css  js  c++  java
  • poj3264

    Balanced Lineup
    Time Limit: 5000MS   Memory Limit: 65536K
    Total Submissions: 45777   Accepted: 21499
    Case Time Limit: 2000MS

    Description

    For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the same order. One day Farmer John decides to organize a game of Ultimate Frisbee with some of the cows. To keep things simple, he will take a contiguous range of cows from the milking lineup to play the game. However, for all the cows to have fun they should not differ too much in height.

    Farmer John has made a list of Q (1 ≤ Q ≤ 200,000) potential groups of cows and their heights (1 ≤ height ≤ 1,000,000). For each group, he wants your help to determine the difference in height between the shortest and the tallest cow in the group.

    Input

    Line 1: Two space-separated integers, N and Q
    Lines 2..N+1: Line i+1 contains a single integer that is the height of cow i 
    Lines N+2..N+Q+1: Two integers A and B (1 ≤ A ≤ B ≤ N), representing the range of cows from A to B inclusive.

    Output

    Lines 1..Q: Each line contains a single integer that is a response to a reply and indicates the difference in height between the tallest and shortest cow in the range.

    Sample Input

    6 3
    1
    7
    3
    4
    2
    5
    1 5
    4 6
    2 2

    Sample Output

    6
    3
    0

    Source

    题解:
    求区间最大值-最小值
     
    RMQ AC代码
    #include<cstdio>
    #include<cmath>
    #include<cstring>
    #include<iostream>
    #include<algorithm>
    using namespace std;
    #define N 50010
    int n,m,a[N],f[N][25],g[N][25];
    inline int read(){
        register int x=0,f=1;
        register char ch=getchar();
        while(ch>'9'||ch<'0'){if(ch=='-')f=-1;ch=getchar();}
        while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
        return x*f;
    }
    inline void RMQ(){
        for(int j=1;j<=20;j++){
            for(int i=1;i+(1<<j)-1<=n;i++){
                f[i][j]=max(f[i][j-1],f[i+(1<<j-1)][j-1]),
                g[i][j]=min(g[i][j-1],g[i+(1<<j-1)][j-1]);
            }
        }
    }
    inline int query(int i,int j){
        int k=log(j-i+1)/log(2);
        return max(f[i][k],f[j-(1<<k)+1][k])-min(g[i][k],g[j-(1<<k)+1][k]);
    }
    int main(){
        n=read();m=read();
        for(int i=1;i<=n;i++) g[i][0]=f[i][0]=read();
        RMQ();
        for(int i=1,l,r;i<=m;i++) l=read(),r=read(),printf("%d
    ",query(l,r));
        return 0;
    }

    线段树代码,自己写吧。

  • 相关阅读:
    我这里面所用的DBHelper
    同时向主表和从表里面导入execl数据 (asp.net webform)
    在asp.net webform中的 gridview 里面的一些基本操作
    在ASP.NET WEBFORM 中后台实现gridview全选功能
    asp.net webform 发送电子邮件
    Asp.Net中的三种分页方式
    asp.net获取客户端浏览器及主机信息
    在asp.net webfrom 中上传execl (读取单个sheet的数据)
    Linux五种IO模型性能分析
    epoll/poll/select的原理
  • 原文地址:https://www.cnblogs.com/shenben/p/5705220.html
Copyright © 2011-2022 走看看