zoukankan      html  css  js  c++  java
  • hdu 4746Mophues[莫比乌斯反演]

    Mophues

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 327670/327670 K (Java/Others)
    Total Submission(s): 1669    Accepted Submission(s): 675
     

    Problem Description

    As we know, any positive integer C ( C >= 2 ) can be written as the multiply of some prime numbers:
        C = p1×p2× p3× ... × pk
    which p1, p2 ... pk are all prime numbers.For example, if C = 24, then:
        24 = 2 × 2 × 2 × 3
        here, p1 = p2 = p3 = 2, p4 = 3, k = 4

    Given two integers P and C. if k<=P( k is the number of C's prime factors), we call C a lucky number of P.

    Now, XXX needs to count the number of pairs (a, b), which 1<=a<=n , 1<=b<=m, and gcd(a,b) is a lucky number of a given P ( "gcd" means "greatest common divisor").

    Please note that we define 1 as lucky number of any non-negative integers because 1 has no prime factor.

     

     

    Input

    The first line of input is an integer Q meaning that there are Q test cases.
    Then Q lines follow, each line is a test case and each test case contains three non-negative numbers: n, m and P (n, m, P <= 5×10
    5. Q <=5000).

     

     

    Output

    For each test case, print the number of pairs (a, b), which 1<=a<=n , 1<=b<=m, and gcd(a,b) is a lucky number of P.

     

     

    Sample Input

    2

    10 10 0

    10 10 1

     

     

    Sample Output

    63

    93

     

     

    Source

    2013 ACM/ICPC Asia Regional Hangzhou Online

     

     

    Recommend

    liuyiding   |   We have carefully selected several similar problems for you:  6022 6021 6020 6019 6018 

     

    //Sourcehttp://acm.hdu.edu.cn/showproblem.php?pid=4746

    Description(题意):

    任何整数C ( C >= 2 )都可以写成素数之积
    C = p1×p2× p3× ... × pk
    其中, p1, p2 ... pk 是素数。如 C = 24, 24 = 2 × 2 × 2 × 3, 其中, p1 = p2 = p3 = 2, p4 = 3, k = 4.
    给定两整数 PC, k<=P ( kC的素因子个数),CP的幸运数.
    现小X需计算的点对 (a, b)的个数,其中1<=a<=n , 1<=b<=m, gcd(a,b)P的幸运数 ( gcd”是最大公因数).
    注意:因为1无素因子,定义1为任何非负数的幸运数.

     

    Input

        首行有一个整数 T,表示有 T 组测试数据.接下来有T行,每行是一种测试数据,含3个非负整数n, m P (n, m, P <= 5×105. T <=5000).

    Output

        对每种测试数据,输出对 (a, b)的个数,其中 1<=a<=n , 1<=b<=m, gcd(a,b) P的幸运数.

    Sample Input

    2

    10 10 0

    10 10 1

    Sample Output

    63

    93

    //num[j]记录j的因子数。
    //g[j][num[i]]用于计算具有相同个数的素因子的i的?(j/i)之和,
    #include<cstdio>
    #include<iostream>
    using namespace std;
    typedef long long ll;
    const int M=5e5+5,N=19;
    int n,m,p,T,g[M][N],num[M];
    int tot,prime[M/3],mu[M];bool check[M];
    int calc(int y,int x){
        int res=0;
        while(!(y%x)) y/=x,res++;
        return res;
    }
    void sieve(){
        n=5e5;mu[1]=1;
        for(int i=2;i<=n;i++){
            if(!check[i]) prime[++tot]=i,mu[i]=-1;
            for(int j=1;j<=tot&&i*prime[j]<=n;j++){
                check[i*prime[j]]=1;
                if(!(i%prime[j])){mu[i*prime[j]]=0;break;}
                else mu[i*prime[j]]=-mu[i];
            }
        }
        for(int i=2;i<=n;i++) if(!num[i]) for(int j=i;j<=n;j+=i) num[j]+=calc(j,i);
        for(int i=1;i<=n;i++) for(int j=i;j<=n;j+=i) g[j][num[i]]+=mu[j/i];
        for(int i=1;i<=n;i++) for(int j=1;j<19;j++) g[i][j]+=g[i][j-1];
        for(int i=1;i<=n;i++) for(int j=0;j<19;j++) g[i][j]+=g[i-1][j];
    }
    ll solve(int n,int m,int p){
        if(p>=19) return 1LL*n*m;
        if(n>m) swap(n,m);
        ll ans=0;
        for(int i=1,pos=0;i<=n;i=pos+1){
            pos=min(n/(n/i),m/(m/i));
            ans+=1LL*(n/i)*(m/i)*(g[pos][p]-g[i-1][p]);
        }
        return ans;
    }
    int main(){
        sieve();
        for(scanf("%d",&T);T--;){
            scanf("%d%d%d",&n,&m,&p),
            printf("%I64d
    ",solve(n,m,p));
        }
        return 0;
    }
  • 相关阅读:
    再学 GDI+[11]: DrawCurve 绘制曲线
    再学 GDI+[7]: DrawLines 绘制一组直线
    再学 GDI+[9]: DrawPolygon 绘制多边形
    再学 GDI+[10]: DrawClosedCurve 绘制闭合曲线
    再学 GDI+[13]: DrawBezier 绘制贝塞尔线
    再学 GDI+[8]: DrawRectangles 绘制一组矩形
    再学 GDI+[5]: DrawArc 绘制弧线
    再学 GDI+[12]: 准备工作 矩形命中
    再学 GDI+[6]: DrawPie 绘制饼形
    判断字符串中子串个数的函数
  • 原文地址:https://www.cnblogs.com/shenben/p/6748126.html
Copyright © 2011-2022 走看看