zoukankan      html  css  js  c++  java
  • hdu-题目1159:Common Subsequence

    http://acm.hdu.edu.cn/showproblem.php?pid=1159

    Common Subsequence

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 38176    Accepted Submission(s): 17504


    Problem Description
    A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = <x1, x2, ..., xm> another sequence Z = <z1, z2, ..., zk> is a subsequence of X if there exists a strictly increasing sequence <i1, i2, ..., ik> of indices of X such that for all j = 1,2,...,k, xij = zj. For example, Z = <a, b, f, c> is a subsequence of X = <a, b, c, f, b, c> with index sequence <1, 2, 4, 6>. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y. 
    The program input is from a text file. Each data set in the file contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct. For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line. 
     
    Sample Input
    abcfbc abfcab
    programming contest
    abcd mnp
     
    Sample Output
    4
    2
    0
     
    Source
     
    Recommend
    Ignatius
     
    动态规划中的最长公共子序列。用dp[i][j]保存第一个字符串前i个字符和第二个字符串前j个字符的公共子序列长度。
    如果str1[i]==str2[j],dp[i][j]=dp[i-1][j-1]。
    如果str1[i]!=str2[j],dp[i][j]=max(dp[i-1][j],dp[i][j-1])
    上述即是动态规划的状态转移公式。
     
     1 #include <stdio.h>
     2 #include <string.h>
     3 
     4 using namespace std;
     5 
     6 int dp[1001][1001];
     7 
     8 char str1[1001], str2[1001];
     9 
    10 int max(int a, int b)
    11 {
    12     if(a>b)
    13         return a;
    14     else
    15         return b;
    16 }
    17 
    18 int main()
    19 {
    20     while(scanf("%s %s", str1, str2)!=EOF)
    21     {
    22 
    23         int len1=strlen(str1);
    24         int len2=strlen(str2);
    25 
    26 
    27         for(int i=0; i<=len1; i++) dp[i][0]=0;
    28         for(int j=0; j<=len2; j++) dp[0][j]=0;
    29 
    30         for(int i=1; i<=len1; i++)
    31             for(int j=1; j<=len2; j++)
    32         {
    33             if(str1[i-1]!=str2[j-1])
    34             {
    35                 dp[i][j]=max(dp[i-1][j], dp[i][j-1]);
    36 
    37             }
    38 
    39             else
    40             {
    41                 dp[i][j]=dp[i-1][j-1]+1;
    42             }
    43         }
    44 
    45     printf("%d
    ",dp[len1][len2]);
    46     }
    47 
    48     return 0;
    49 }
  • 相关阅读:
    位移算数符
    蓝桥杯 错误票据(第四届预赛第7题)
    hdu Train Problem I(栈的简单应用)
    ACM YTU 2018 母牛的故事
    ACM YTU 1012 u Calculate e
    C 语言 printf格式控制详解
    ACM YTU 十进制与八进制的转换 (栈和队列) STL栈调用
    ACM HDU 2044 一只小蜜蜂
    ACM YTU 挑战编程 字符串 Problem A: WERTYU
    ACM HDU 1021 Fibonacci Again
  • 原文地址:https://www.cnblogs.com/shenckicc/p/6781235.html
Copyright © 2011-2022 走看看