zoukankan      html  css  js  c++  java
  • UVA 100


     The 3n + 1 problem 

    Background

    Problems in Computer Science are often classified as belonging to a certain class of problems (e.g., NP, Unsolvable, Recursive). In this problem you will be analyzing a property of an algorithm whose classification is not known for all possible inputs.

    The Problem

    Consider the following algorithm:

     
    		1. 		 input n

    2. print n

    3. if n = 1 then STOP

    4. if n is odd then tex2html_wrap_inline44

    5. else tex2html_wrap_inline46

    6. GOTO 2

    Given the input 22, the following sequence of numbers will be printed 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1

    It is conjectured that the algorithm above will terminate (when a 1 is printed) for any integral input value. Despite the simplicity of the algorithm, it is unknown whether this conjecture is true. It has been verified, however, for all integers n such that 0 < n < 1,000,000 (and, in fact, for many more numbers than this.)

    Given an input n, it is possible to determine the number of numbers printed (including the 1). For a given n this is called the cycle-lengthof n. In the example above, the cycle length of 22 is 16.

    For any two numbers i and j you are to determine the maximum cycle length over all numbers between i and j.

    The Input

    The input will consist of a series of pairs of integers i and j, one pair of integers per line. All integers will be less than 1,000,000 and greater than 0.

    You should process all pairs of integers and for each pair determine the maximum cycle length over all integers between and including iand j.

    You can assume that no operation overflows a 32-bit integer.

    The Output

    For each pair of input integers i and j you should output ij, and the maximum cycle length for integers between and including i and j. These three numbers should be separated by at least one space with all three numbers on one line and with one line of output for each line of input. The integers i and j must appear in the output in the same order in which they appeared in the input and should be followed by the maximum cycle length (on the same line).

    Sample Input

    1 10
    100 200
    201 210
    900 1000
    

    Sample Output

    1 10 20
    100 200 125
    201 210 89
    900 1000 174

    题目大意:
      无序输入两个整数i和j,找到从i到j中(包括i 和 j)的最多循环次数到 1 的数,输出最多的次数!

    代码 :耗时 0.688
    View Code
     1 // File Name: 100.cpp
     2 // Author: sheng
     3 // Created Time: 2013年03月19日 星期二 14时51分00秒
     4 
     5 #include <iostream>
     6 using namespace std;
     7 typedef long long LL;
     8 
     9 LL n,  m;
    10 
    11 void cnt(LL temp, LL &num)
    12 {
    13     if (temp == 1)
    14         return ;
    15     num ++;
    16     if (temp%2)
    17         cnt(3 * temp + 1, num);
    18     else  cnt(temp / 2, num);
    19 
    20     return ;
    21 }
    22 
    23 LL FindMax( LL a, LL b )
    24 {
    25     if (a > b)
    26     {
    27         a = a ^ b;
    28         b = b ^ a;
    29         a = a ^ b;
    30     }
    31     LL ans = 0;
    32     for (LL i = a; i <= b; i ++)
    33     {
    34         LL num = 1;
    35         cnt(i, num);
    36         if (num > ans)
    37             ans = num;
    38     }
    39     return ans;
    40 }
    41 
    42 int main()
    43 {
    44     while (cin >> m>> n)
    45     {
    46         LL ans = FindMax( m, n);
    47         cout << m <<" "<< n <<" "<< ans <<endl;
    48     }
    49     return 0;
    50 }
  • 相关阅读:
    pause函数
    内核实现信号捕捉原理
    sigaction()函数
    SSIS使用事务回滚
    Sql Server XML
    Powershell远程执行命令
    光盘yum源搭建
    挂载光盘
    网络管理
    用户管理
  • 原文地址:https://www.cnblogs.com/shengshouzhaixing/p/2969405.html
Copyright © 2011-2022 走看看