zoukankan      html  css  js  c++  java
  • Hadoop| YARN| 计数器| 压缩| 调优

    1. 计数器应用

    2. 数据清洗(ETL)

    在运行核心业务MapReduce程序之前,往往要先对数据进行清洗,清理掉不符合用户要求的数据。清理的过程往往只需要运行Mapper程序,不需要运行Reduce程序。

    LogMapper.java

    @Override
        protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
            String[] fields = value.toString().split(" ");
            if (fields.length > 11){ //过滤掉log长度< 11的;
                context.write(value, NullWritable.get());
                context.getCounter("ETL", "true").increment(1);
            }else {
                /*ETL
                false=849
                true=13770
                */
                context.getCounter("ETL", "false").increment(1);
            }
    
    在LogDriver.java中添加:
            job.setMapperClass(LogMapper.class);
            job.setNumReduceTasks(0);

    3. Hadoop数据压缩

    开源的7zip、rar;减少数据量IO(网络传输、磁盘读写) ;压缩默认是关闭;

    ① 压缩策略

    运算密集型大量需CPU,IO密集型是大量用磁盘;

    存储数据主要用的Gzip,Linux和hadoop都支持,使用方便;

    Snappy一般用在Map输入,Reduce输出的时候启用;

    为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器,如下:
    压缩格式    对应的编码/解码器
    DEFLATE    org.apache.hadoop.io.compress.DefaultCodec
    gzip    org.apache.hadoop.io.compress.GzipCodec
    bzip2    org.apache.hadoop.io.compress.BZip2Codec
    LZO    com.hadoop.compression.lzo.LzopCodec
    Snappy    org.apache.hadoop.io.compress.SnappyCodec
    
    压缩性能的比较
    压缩算法    原始文件大小    压缩文件大小    压缩速度    解压速度
    gzip      8.3GB    1.8GB    17.5MB/s    58MB/s
    bzip2      8.3GB    1.1GB    2.4MB/s    9.5MB/s
    LZO      8.3GB    2.9GB    49.3MB/s    74.6MB/s

    ① Gzip压缩| 常用的,用在头| 尾数据

    tar.gz输入的数据不能太大,不然一个MapTask处理的数据太多

    ②LZO压缩

     ③ Bzip2

     

    ④ Snappy

    主要用在shuffle阶段;如在Map最后的输出阶段

    ⑤ 压缩位置

      头、中间的shuffle、尾部 

      压缩的配置

     输入端:放一个压缩文件它能自动识别,不需要配置;

    参数mapreduce.map.output.compress(在mapred-site.xml中配置)    默认false    在mapper输出阶段    这个参数设为true启用压缩
    
    mapreduce.map.output.compress.codec(在mapred-site.xml中配置)  默认org.apache.hadoop.io.compress.DefaultCodec    mapper输出    企业多使用LZO或Snappy编解码器在此阶段压缩数据
    编码格式可写gzip格式,默认用的snappy但现hadoop不支持
    
    mapreduce.output.fileoutputformat.compress(在mapred-site.xml中配置)    false    reducer输出    这个参数设为true启用压缩
    mapreduce.output.fileoutputformat.compress.codec(在mapred-site.xml中配置) org.apache.hadoop.io.compress. DefaultCodec reducer输出 使用标准工具或者编解码器,如gzip和bzip2
    mapreduce.output.fileoutputformat.compress.type(在mapred-site.xml中配置)    RECORD    reducer输出    SequenceFile输出使用的压缩类型:NONE和BLOCK

       自定义压缩和解压

    public class TestCompress {
        public static void main(String[] args) throws IOException {
            compress("F://web.log", BZip2Codec.class);  //压缩
            //decompress("F://web.log.bz2");  //解压缩
        }                           //传入一个压缩类,通过这个类反射进来一个实例codec,通过实例把流包装起来
        private static void compress(String path, Class<? extends CompressionCodec> codecClass) throws IOException {
            CompressionCodec codec = ReflectionUtils.newInstance(codecClass, new Configuration());
            String extension = codec.getDefaultExtension(); //压缩格式为默认的扩展名,默认的为.bz2;与上边的BZip2Codec.class对应的
                    /*public String getDefaultExtension() {
                        return ".bz2";
                    }*/
            //开流
            FileInputStream fis = new FileInputStream(path);
            FileOutputStream fos = new FileOutputStream(path + extension);//加个扩展名
            CompressionOutputStream cos = codec.createOutputStream(fos); //包装流,创建输出流的压缩流
            //流要对口
            IOUtils.copyBytes(fis, cos, 1024);
            IOUtils.closeStream(fis);
            IOUtils.closeStream(cos);
        }
        private static void decompress(String path) throws IOException {
            CompressionCodecFactory codecFactory = new CompressionCodecFactory(new Configuration());
            //工厂模式,通过文件名path,getCodec返回一个具体的类,这叫工厂模式,在编码写代码的时候很好用;没工厂模式就要不断的判断if或switch
            CompressionCodec codec = codecFactory.getCodec(new Path(path));
    
            FileInputStream fis = new FileInputStream(path);
            FileOutputStream fos = new FileOutputStream("F://1.log");
    
            CompressionInputStream cis = codec.createInputStream(fis); //输出的就不是压缩的了
            //谁被压缩就包谁,这里得是cis
            IOUtils.copyBytes(cis, fos, 1024);
            IOUtils.closeStream(cis);
            IOUtils.closeStream(fis);
        }
    }

     ①  Map输出端采用压缩也就是在shuffle阶段的配置:

    在Driver.java
         Configuration configuration = new Configuration();
            // 开启map端输出压缩
            configuration.setBoolean("mapreduce.map.output.compress", true);
            // 设置map端输出压缩方式
            configuration.setClass("mapreduce.map.output.compress.codec", BZip2Codec.class, CompressionCodec.class);
                                              //在工作中不能采用Bzip压缩,文件大点 2M/S的速度,会很慢!!
            //1.获取一个任务实例; 获取配置信息和封装任务
            Job job = Job.getInstance(configuration); //new Configuration()
    --->结果看不出什么区别的
     INFO [org.apache.hadoop.io.compress.CodecPool] - Got brand-new compressor [.bz2] ##在shuffle阶段采用压缩

     ② 输入端的压缩不需配置,可自动识别

    [org.apache.hadoop.io.compress.CodecPool] - Got brand-new decompressor [.bz2]

      ③ 在Reduce输出端采用压缩的设置

        // 设置reduce端输出压缩开启
            FileOutputFormat.setCompressOutput(job, true);
            // 设置压缩的方式
            FileOutputFormat.setOutputCompressorClass(job, BZip2Codec.class);
    
            //6.提交任务
            boolean b = job.waitForCompletion(true);
    
    --->最后的结果是part-r-00000.bz2格式的

    4. Yarn资源调度器

    Yarn资源池;形如cpu和内存;

     1、YARN架构

    RM、NM不关心Job的运行情况;RM只关心客户端的申请、Task和Task的调度;

    NM只听命令(RM、AM)

    Job的整个运行是由ApplicationMaster(AM)负责

    MapTask、ReduceTask、ApplicationMaster都是运行在Container内部

     2、YARN的工作运行机制

    提交作业 

    Client调用job.waitForCompletion方法让整个集群提交MapReduce作业任务;

    Client----->向ResourceManager申请一个Application,RM给Client返回该job资源的提交路径和作业id即application_id告诉这个任务是几号;

    ---->Client--Drever就会把资源(Job.split、Job.xml、wc.jar)提交到指定的资源提交路径--HDFS上的临时文件夹

     ---Client资源提交完---->向ResourceManager申请运行MrAppMaster(是mapreduce的ApplicationMaster的实现

    作业初始化

    ------>RM将用户请求包装成一个Task---->把Task添加到容量调度队列里 ----->某一个空闲的NodeManager(领取到Task即Job任务)

    ---->该NM创建Container并产生且运行MrAppMaster(这个任务才真正执行) ----->把Client提交的资源下载到本地,

    任务分配

    MrAppMaster根据切片的数量向RM申请MapTask容器任务资源 --->RM把它包装成Task添加到队列---->RM将运行MapTask这个任务分配给另外两个NodeManager,另外两个NodeManager分别领取任务并创建Container容器。

    任务运行

    NM分别启动MapTask(程序启动代码是由MrAppmaster发送给各个NM来启动相应MapTask),MapTask对数据分区排序 ---- >执行完之后输出文件(一个MapTask输出一个分区且内部有序的文件),执行完之后它们的Container就会被回收;

    MrAppmaster等待所有的MapTask运行完毕之后,进一步根据分区文件的数量 job设置的数量向RM申请相应的ReduceTask容器 ---->ReduceTask向MapTask获取相应分区数据,把相应数据下载到本地开始执行,它执行完后它的Container被回收;

    ---->把最后结果写到HDFS中;----最后程序执行完之后MrAppMaster向RM注销自己,Container被回收;

    进度和状态更新

    YARN中的任务将其进度和状态(包括counter)返回给应用管理器, 客户端每秒(通过mapreduce.client.progressmonitor.pollinterval设置)向应用管理器请求进度更新, 展示给用户。

    作业完成

    除了向应用管理器请求作业进度外, 客户端每5秒都会通过调用waitForCompletion()来检查作业是否完成。时间间隔可以通过mapreduce.client.completion.pollinterval来设置。作业完成之后, 应用管理器和Container会清理工作状态。作业的信息会被作业历史服务器存储以备之后用户核查。

    3、 资源调度器

    Hadoop作业调度器主要有三种:FIFO、Capacity Scheduler和Fair SchedulerHadoop2.7.2默认的资源调度器是Capacity Scheduler。

    1.先进先出调度器(FIFO)

    存在的问题:如果有紧急的任务,却要等到前面的先执行完;

    2.容量调度器(Capacity Scheduler)就是多个FIFO队列并行 (默认的调度器)

      占据集群的资源

    存在的问题:如果queueC很闲,它所占据的资源不会给queueA和queueB;

     3.公平调度器(Fair Scheduler)

    可插拔(任务可来可不来,可以运行各种任务(如MapReduce| spark等任务))式分层队列

    缺额:按照所需要的资源数量来分配资源;

    如果queueB中有任务了,而A和C是空闲的,则A和C中的资源会都给queueB(占据集群所有资源),如果C有其他任务了,会从B中抢资源过来;

    多级队列叠加:queueB中还可以再分queueD和queueE各占50%,相当于各占整个集群的25%;如果某个任务优先级比较低就可以把它放到队列的深层级处(按队列的层级来管理任务的优先级—公平);

    每个队列所占据的资源不是死的,取决于任务的紧迫度;根据任务公平的按比例分配资源;

     http://hadoop.apache.org/docs/stable/hadoop-yarn/hadoop-yarn-site/FairScheduler.html

    4、 任务的推测执行

    在map阶段启动mapTask,每个mapTask是并行,运行的时间不一样;
    1.作业完成时间取决于最慢的任务完成时间
      一个作业由若干个Map任务和Reduce任务构成。因硬件老化、软件Bug等,某些任务可能运行非常慢。
      思考:系统中有99%的Map任务都完成了,只有少数几个Map老是进度很慢,完不成,怎么办?
    2.推测执行机制
      发现拖后腿的任务,比如某个任务运行速度远慢于任务平均速度。为拖后腿任务启动一个备份任务,同时运行。谁先运行完,则采用谁的结果。
    3.执行推测任务的前提条件
      (1)每个Task只能有一个备份任务;(消耗yarn的资源)
      (2)当前Job已完成的Task必须不小于0.05(这个任务至少完成5%才会开始去推测执行,太长太短都不好; )
      (3)开启推测执行参数设置。mapred-site.xml文件中默认是打开的。

    <property>
          <name>mapreduce.map.speculative</name>
          <value>true</value>
          <description>If true, then multiple instances of some map tasks may be executed in parallel.</description>
    </property>
    
    <property>
          <name>mapreduce.reduce.speculative</name>
          <value>true</value>
          <description>If true, then multiple instances of some reduce tasks may be executed in parallel.</description>
    </property>

    4.不能启用推测执行机制情况
      (1)任务间存在严重的负载倾斜;( 不是因为它算的慢是因为数据量大,再启动一个也是没用的 
      (2)特殊任务,比如任务向数据库中写数据。(两个Task写同样的,会产生冲突)

    算法原理

    推算任务执行时间、看看任务什么时候结束、推算下备份任务如果启动了什么时候结束、

    最后选择差值(新启动的备份任务的时间 — 目前任务的时间)最大的为之启动备份任务;

    5. Hadoop企业优化

     

    看什么导致的Map运行时间过长;加快Map、开启Map| Reduce共存;

    小文件过多可使用combineTextFormat、打Ha包、最好不弄小文件;

     压缩以后文件不可分块会导致map阶段过长;

    Spill溢出次数过多,把环形缓冲区改大;Merge合并,如要合并20个文件,先合并前10个,然后把合并的放到文件末尾,剩下11个文件,再取前10个合并,剩2个,再把它俩合并;较少merger次数,一次多合并几个文件;

    5.1 MapReduce优化方法

    MapReduce优化方法主要从六个方面考虑:数据输入、Map阶段、Reduce阶段、IO传输、数据倾斜问题和常用的调优参数。

    1.数据输入:

    处理小文件慢:处理小文件的计算开销< 建立虚拟机JVM的开销,一次MapTask就要建立一次JVM;JVM重用,一个MapTask运行完一个数据不会立刻被杀掉,再运行一段其他数据,因为同一个任务的Map阶段都是一样的,处理2条数据分配资源只分配一次,规避了资源分配>>事务处理的时间;

    2.Map阶段

     

    io.sort.mb、sort.spill.percent 由100M,0.8 --->500M,0.95

    开多少个线程取决于磁盘的能力

    3.Reduce阶段

            

    4. IO传输

     5.数据倾斜

     

      spark采用的方法是缩放key的粒度;

    5.2 HDFS小文件优化方法

     HDFS小文件弊端

    HDFS上每个文件都要在NameNode上建立一个索引,这个索引的大小约为150byte,这样当小文件比较多的时候,就会产生很多的索引文件,一方面会大量占用NameNode的内存空间另一方面就是索引文件过大使得索引速度变慢

     HDFS小文件解决方案

    小文件的优化无非以下几种方式:

    (1)在数据采集的时候,就将小文件或小批数据合成大文件再上传HDFS。

    (2)在业务处理之前,在HDFS上使用MapReduce程序对小文件进行合并。

    (3)在MapReduce处理时,可采用CombineTextInputFormat提高效率。

     

    JVM重用内存不会立即释放,JVM中内存靠GC回收但它并不能保证内存100%回收。

  • 相关阅读:
    pip 安装依赖 requirements.txt
    TCP三次握手四次挥手详细理解附面试题
    装饰器修复技术
    BBS(第一篇)
    Auth模块
    Django--中间件
    cookie和session
    创建多对多表关系的三种方式
    批量插入数据,自定义分页器
    Django--几个重要方法优化(面试重点)
  • 原文地址:https://www.cnblogs.com/shengyang17/p/10321228.html
Copyright © 2011-2022 走看看