zoukankan      html  css  js  c++  java
  • Python交互图表可视化Bokeh:7. 工具栏

    ToolBar工具栏设置

    ① 位置设置
    ② 移动、放大缩小、存储、刷新
    ③ 选择
    ④ 提示框、十字线

     1. 位置设置

    import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    % matplotlib inline
    
    import warnings
    warnings.filterwarnings('ignore') 
    # 不发出警告
    
    from bokeh.io import output_notebook
    output_notebook()
    # 导入notebook绘图模块
    
    from bokeh.plotting import figure,show
    from bokeh.models import ColumnDataSource
    # 导入图表绘制、图标展示模块
    # 导入ColumnDataSource模块

    # 工具栏 tools
    # (1)设置位置
    
    p = figure(plot_width=300, plot_height=300,
              toolbar_location="above")
    # 工具栏位置:"above","below","left","right"
    
    p.circle(np.random.randn(100),np.random.randn(100))
    show(p)

    # 工具栏 tools
    # (1)设置位置
    
    p = figure(plot_width=300, plot_height=300,
               toolbar_location="below",
               toolbar_sticky=False)
    # 工具栏位置设置为"below"时,可增加toolbar_sticky参数使得toolsbar不被遮挡
    p.circle(np.random.randn(100),np.random.randn(100))
    show(p)

    2. 移动、放大缩小、存储、刷新 

    # 工具栏 tools
    # (2)移动、放大缩小、存储、刷新
    
    TOOLS = '''
            pan, xpan, ypan,             
            box_zoom,
            wheel_zoom, xwheel_zoom, ywheel_zoom,   
            zoom_in, xzoom_in, yzoom_in,
            zoom_out, xzoom_out, yzoom_out,
            save,reset
            '''
    #pan是直接移动;xpan和ypan分别是横轴、竖轴移动;box_zoom是矩形框放大,wheel_zoom滚轮缩放:直接缩放、X轴缩放、Y轴缩放;通过鼠标点击缩放zoom_in
    p = figure(plot_width=800, plot_height=400,toolbar_location="above",
               tools = TOOLS)
    # 添加toolbar
    # 这里tools = '' 则不显示toolbar
    
    p.circle(np.random.randn(500),np.random.randn(500))
    show(p)  

    3. 选择 

    # 工具栏 tools
    # (3)选择
    
    TOOLS = '''
            box_select,lasso_select,
            reset
            '''
    #画多边形和矩形
    p = figure(plot_width=800, plot_height=400,toolbar_location="above",
               tools = TOOLS)
    # 添加toolbar
    
    p.circle(np.random.randn(500),np.random.randn(500))
    show(p)

    #联动
    from bokeh.layouts import gridplot
    
    
    TOOLS = '''
            box_select,lasso_select,
            reset
            '''
    df = pd.DataFrame(np.random.randn(500,2), columns = ['A', 'B'])
    source = ColumnDataSource(data=df)
    
    p1 = figure(plot_width=400, plot_height=400,toolbar_location="above",tools = TOOLS)
    p2 = figure(plot_width=400, plot_height=400,toolbar_location="above",tools = TOOLS)
    
    
    p1.circle(x='index', y='A',source=source)
    p2.line(x='index', y='B',source=source)
    s = gridplot([[p1, p2]])
    show(s)

     4. 提示框、十字线 

    # 工具栏 tools
    # (4)提示框、十字线
    
    from bokeh.models import HoverTool
    # 用于设置显示标签内容
    
    df = pd.DataFrame({'A':np.random.randn(500)*100,
                      'B':np.random.randn(500)*100,
                      'type':np.random.choice(['pooh', 'rabbit', 'piglet', 'Christopher'],500),
                      'color':np.random.choice(['red', 'yellow', 'blue', 'green'],500)})
    df.index.name = 'index'
    source = ColumnDataSource(df)
    print(df.head())
    # 创建数据 → 包含四个标签
    
    p1 = figure(plot_width=800, plot_height=400,toolbar_location="above",
                tools=['hover,box_select,reset,wheel_zoom,pan,crosshair'])   # 注意这里书写方式;  hover它的作用是只是会显示出点的每个标签;crossshair是显示十字叉
    # 如果不设置标签,就只写hover,例如 tools='hover,box_select,reset,wheel_zoom,pan,crosshair'
    p1.circle(x = 'A',y = 'B',source = source,size = 10,alpha = 0.3, color = 'color')
    show(p1)

    from bokeh.models import HoverTool
    # 用于设置显示标签内容
    
    df = pd.DataFrame({'A':np.random.randn(500)*100,
                      'B':np.random.randn(500)*100,
                      'type':np.random.choice(['pooh', 'rabbit', 'piglet', 'Christopher'],500),
                      'color':np.random.choice(['red', 'yellow', 'blue', 'green'],500)})
    df.index.name = 'index'
    source = ColumnDataSource(df)
    print(df.head())
    # 创建数据 → 包含四个标签
    
    hover = HoverTool(tooltips=[
                                ("index", "$index"),
                                ("(x,y)", "($x, $y)"),
                                ("A", "@A"),
                                ("B", "@B"),
                                ("type", "@type"),
                                ("color", "@color"),
                            ])
    # 设置标签显示内容
    # $index:自动计算 → 数据index
    # $x:自动计算 → 数据x值
    # $y:自动计算 → 数据y值
    # @A:显示ColumnDataSource中对应字段值
    
    p1 = figure(plot_width=800, plot_height=400,toolbar_location="above",
                tools=[hover,'box_select,reset,wheel_zoom,pan,crosshair'])   # 注意这里书写方式;  hover它的作用是只是会显示出点的每个标签;crossshair是显示十字叉
    # 如果不设置标签,就只写hover,例如 tools='hover,box_select,reset,wheel_zoom,pan,crosshair'
    p1.circle(x = 'A',y = 'B',source = source,size = 10,alpha = 0.3, color = 'color')
    show(p1)
    
    p2 = figure(plot_width=800, plot_height=400,toolbar_location="above",
               tools=[hover,'box_select,reset,wheel_zoom,pan'])
    p2.vbar(x = 'index', width=1, top='A',source = source)
    show(p2)
    print(hover) #就是一个生成器

    HoverTool(id='3b80258a-2940-4c8a-af3e-9a3905cb7c09', ...)

    5. 筛选数据 

     隐藏

    # 1、筛选数据 - 隐藏
    # legend.click_policy
    
    from bokeh.palettes import Spectral4
    # 导入颜色模块
    
    df = pd.DataFrame({'A':np.random.randn(500).cumsum(),
                      'B':np.random.randn(500).cumsum(),
                      'C':np.random.randn(500).cumsum(),
                      'D':np.random.randn(500).cumsum()},
                     index = pd.date_range('20180101',freq = 'D',periods=500))
    # 创建数据
    
    p = figure(plot_width=800, plot_height=400, x_axis_type="datetime")
    p.title.text = '点击图例来隐藏数据'
    
    for col,color in zip(df.columns.tolist(),Spectral4):
        p.line(df.index,df[col],line_width=2, color=color, alpha=0.8,legend = col)
    
    p.legend.location = "top_left"
    p.legend.click_policy="hide"
    # 设置图例,点击隐藏
    
    show(p)

    消隐

    # 1、筛选数据 - 消隐
    # legend.click_policy
    
    from bokeh.palettes import Spectral4
    # 导入颜色模块
    
    df = pd.DataFrame({'A':np.random.randn(500).cumsum(),
                      'B':np.random.randn(500).cumsum(),
                      'C':np.random.randn(500).cumsum(),
                      'D':np.random.randn(500).cumsum()},
                     index = pd.date_range('20180101',freq = 'D',periods=500))
    # 创建数据
    
    p = figure(plot_width=800, plot_height=400, x_axis_type="datetime")
    p.title.text = '点击图例来隐藏数据'
    
    for col,color in zip(df.columns.tolist(),Spectral4):
        p.line(df.index,df[col],line_width=2, color=color, alpha=0.8,legend = col,
               muted_color=color, muted_alpha=0.2)   # 设置消隐后的显示颜色、透明度 可以设置muted_color = 'black'
    
    p.legend.location = "top_left"
    p.legend.click_policy="mute"
    # 设置图例,点击隐藏
    
    show(p)

    6. 交互工具 

    # 2、交互小工具
    # 图表分页
    
    from bokeh.models.widgets import Panel, Tabs
    # 导入panel,tabs模块
    
    p1 = figure(plot_width=500, plot_height=300)
    p1.circle([1, 2, 3, 4, 5], [6, 7, 2, 4, 5], size=20, color="navy", alpha=0.5)
    tab1 = Panel(child=p1, title="circle")
    # child → 页码
    # title → 分页名称
    
    p2 = figure(plot_width=500, plot_height=300)
    p2.line([1, 2, 3, 4, 5], [4, 2, 3, 8, 6], line_width=3, color="navy", alpha=0.5)
    tab2 = Panel(child=p2, title="line")
    
    tabs = Tabs(tabs=[ tab1, tab2 ])
    # 设置分页图表
    
    show(tabs)

     

  • 相关阅读:
    layui table中省略号展开,弹框拖动会错位问题
    layui table分页 page为false时,limit问题
    layui 表格在排序之后没有重新渲染问题
    基于jQuery的控件:弹框
    layui layer弹框中表格的显示
    layui select使用问题
    页面强制横屏
    linux下常用命令
    文字超出省略号显示
    Web Notification简单实现桌面消息通知(右下角提示)
  • 原文地址:https://www.cnblogs.com/shengyang17/p/9739571.html
Copyright © 2011-2022 走看看