zoukankan      html  css  js  c++  java
  • Pairs Forming LCM(素因子分解)

    http://acm.hust.edu.cn/vjudge/contest/view.action?cid=109329#problem/B    全题在文末。

    题意:在a,b中(a,b<=n)(1 ≤ n ≤ 1014),有多少组(a,b)  (a<b)满足lcm(a,b)==n;

     

    先来看个知识点:

    素因子分解:n = p1 ^ e1 * p2 ^ e2 *..........*pn ^ en

    for i in range(1,n):

            ei 从0取到ei的所有组合

    必能包含所有n的因子。

    现在取n的两个因子a,b

    a=p1 ^ a1 * p2 ^ a2 *..........*pn ^ an

    b=p1 ^ b1 * p2 ^ b2 *..........*pn ^ bn

    gcd(a,b)=p1 ^ min(a1,b1) * p2 ^ min(a2,b2) *..........*pn ^ min(an,bn)

    lcm(a,b)=p1 ^ max(a1,b1) * p2 ^ max(a2,b2) *..........*pn ^ max(an,bn)

    哈哈,又多了种求gcd,lcm的方法。

     

    题解:

    先对n素因子分解,n = p1 ^ e1 * p2 ^ e2 *..........*pk ^ ek,

    lcm(a,b)=p1 ^ max(a1,b1) * p2 ^ max(a2,b2) *..........*pk ^ max(ak,bk)

    所以,当lcm(a,b)==n时,max(a1,b1)==e1,max(a2,b2)==e2,…max(ak,bk)==ek

    当ai == ei时,bi可取 [0, ei] 中的所有数  有 ei+1 种情况,bi==ei时同理。

    那么就有2(ei+1)种取法,但是当ai = bi = ei 时有重复,所以取法数为2(ei+1)-1=2*ei+1。
    除了 (n, n) 所有的情况都出现了两次  那么满足a<=b的有 (2*ei + 1)) / 2 + 1

     

     

    #include<iostream>
    #include<cstdio>
    #include<cstring>
    using namespace std;
    typedef long long LL;
    const int N=1e7+5;
    const int NN=1e6;
    unsigned int prime[NN],cnt;           //prime[N]会MLE
    bool vis[N];
    
    void is_prime()
    {
        cnt=0;
        memset(vis,0,sizeof(vis));
        for(int i=2;i<N;i++)
        {
            if(!vis[i])
            {
                prime[cnt++]=i;
                for(int j=i+i;j<N;j+=i)
                {
                    vis[j]=1;
                }
            }
        }
    }
    
    int main()
    {
        is_prime();
        int t;
        cin>>t;
        for(int kase=1;kase<=t;kase++)
        {
            LL n;
            cin>>n;
            int ans=1;
            for(int i=0;i<cnt&&prime[i]*prime[i]<=n;i++)
            {
                if(n%prime[i]==0)
                {
                    int e=0;
                    while(n%prime[i]==0)
                    {
                        n/=prime[i];
                        e++;
                    }
                    ans*=(2*e+1);
                }
            }
            if(n>1)
                ans*=(2*1+1);
            printf("Case %d: %d
    ",kase,(ans+1)/2);
        }
    }

     

    题目:

    B - Pairs Forming LCM

    Time Limit:2000MS     Memory Limit:32768KB     64bit IO Format:%lld & %llu

    Submit Status

    Description

    Find the result of the following code:

    long long pairsFormLCM( int n ) {
    long long res = 0;
    for( int i = 1; i <= n; i++ )
    for( int j = i; j <= n; j++ )
    if( lcm(i, j) == n ) res++; // lcm means least common multiple
    return res;
    }

    A straight forward implementation of the code may time out. If you analyze the code, you will find that the code actually counts the number of pairs(i, j) for which lcm(i, j) = n and (i ≤ j).

    Input

    Input starts with an integer T (≤ 200), denoting the number of test cases.

    Each case starts with a line containing an integer n (1 ≤ n ≤ 1014).

    Output

    For each case, print the case number and the value returned by the function 'pairsFormLCM(n)'.

    Sample Input

    15

    2

    3

    4

    6

    8

    10

    12

    15

    18

    20

    21

    24

    25

    27

    29

    Sample Output

    Case 1: 2

    Case 2: 2

    Case 3: 3

    Case 4: 5

    Case 5: 4

    Case 6: 5

    Case 7: 8

    Case 8: 5

    Case 9: 8

    Case 10: 8

    Case 11: 5

    Case 12: 11

    Case 13: 3

    Case 14: 4

    Case 15: 2

  • 相关阅读:
    【机器学习】浅谈协方差
    python {}.format
    【机器学习】准确率、精确率、召回率
    【声纹识别】 EER
    【机器学习】 最形象的入门
    逻辑卷-LVM
    RAID及软RAID的实现
    输入数字or 字符串,统计重复次数---字典统计练习
    Python-数据结构之dict(字典*****)
    POJ 3204 网络流的必须边
  • 原文地址:https://www.cnblogs.com/shentr/p/5285407.html
Copyright © 2011-2022 走看看