多元线性回归是最简单的机器学习模型,通过给定的训练数据集,拟合出一个线性模型,进而对新数据做出预测。
对应的模型如下:
n: 特征数量。
一般选取残差平方和最小化作为损失函数,对应为:
M:训练样本数量。
通过最小化代价损失函数,来求得 值,一般优化的方法有两种,第一是梯度下降算法(Gradient Descent),第二种是矩阵法(The normal equations)。
梯度下降算法
给一个初始值,然后逐步的迭代改变的值,是代价损失函数逐次变小,使每次都往梯度下降的方向改变:
由于每次迭代都需要计算所有样本的残差并加和,因此此方法也叫做批下降梯度法(batch
随机下降梯度法与下降梯度法对比可能收敛更快,但是可能找不到最优点而在最优点附近徘徊。
矩阵求解法
由于梯度下降算法需要多次迭代,并且需要指定下降速率,如果下降速度过快则可能错过最优点,如果过慢则需要迭代多次,因此还可选用矩阵法求解。
对于一个函数,表示一个输入mxn的矩阵,输入为一个实数,即输入x为矩阵,则对此函数求导数为:
以上即为矩阵法的推导,其中涉及到线性代数的知识没有证明,只要将给定的公式带入求导即可得出此结论。