zoukankan      html  css  js  c++  java
  • kafka_2.10-0.8.1.1.tgz的1或3节点集群的下载、安装和配置(图文详细教程)绝对干货

     

     运行kafka ,需要依赖 zookeeper,你可以使用已有的 zookeeper 集群或者利用 kafka自带的zookeeper。

      单机模式,用的是kafka自带的zookeeper,

      分布式模式,用的是外部安装的zookeeper,即公共的zookeeper。

    见博客  

    4 kafka集群部署及生产者java客户端编程 + kafka消费者java客户端编程 

    (这也是单节点安装)

    kafka_2.10-0.8.1.1.tgz的1节点集群 

    我这里是使用的是,kafka自带的zookeeper。
    以及关于kafka的日志文件啊,都放在默认里即/tmp下,我没修改。保存默认的


    1、 [hadoop@sparksinglenode kafka_2.10-0.8.1.1]$ jps
    2625 Jps
    2、 [hadoop@sparksinglenode kafka_2.10-0.8.1.1]$ bin/zookeeper-server-start.sh config/zookeeper.properties & 
    此刻,这时,会一直停在这,因为是前端运行。
    另开一窗口,
    3、 [hadoop@sparksinglenode kafka_2.10-0.8.1.1]$ bin/kafka-server-start.sh config/server.properties &
    也是前端运行。



    推荐做法!!!
    但是,我这里,自己在kafka安装目录下,为了自己的方便,写了个startkafka.sh和startzookeeper.sh
    nohup bin/kafka-server-start.sh config/server.properties > kafka.log 2>&1 &
    nohup bin/zookeeper-server-start.sh config/zookeeper.properties > zookeeper.log 2>&1 &
    注意还要,root用户来,附上执行权限。chmod +x ./startkafka.sh chmod +x ./startzookeeper.sh 
    这样,就会在kafka安装目录下,对应生出kafka.log和zookeeper.log。

    1、[spark@sparksinglenode kafka_2.10-0.8.1.1]$ jps
    5098 Jps
    2、[spark@sparksinglenode kafka_2.10-0.8.1.1]$ bash startzookeeper.sh
    [spark@sparksinglenode kafka_2.10-0.8.1.1]$ jps
    5125 Jps
    5109 QuorumPeerMain
    3、[spark@sparksinglenode kafka_2.10-0.8.1.1]$ bash startkafka.sh
    [spark@sparksinglenode kafka_2.10-0.8.1.1]$ jps
    5155 Jps
    5140 Kafka
    5109 QuorumPeerMain
    [spark@sparksinglenode kafka_2.10-0.8.1.1]$ 



     

       我了个去,启动是多么方便!

      

    kafka_2.10-0.8.1.1.tgz的3节点集群

      关于下载,和安装,解压,这些,我不多赘述了。见我的单节点博客。

     

     

    root@SparkMaster:/usr/local/kafka/kafka_2.10-0.8.1.1/config# cat server.properties 
    # Licensed to the Apache Software Foundation (ASF) under one or more
    # contributor license agreements. See the NOTICE file distributed with
    # this work for additional information regarding copyright ownership.
    # The ASF licenses this file to You under the Apache License, Version 2.0
    # (the "License"); you may not use this file except in compliance with
    # the License. You may obtain a copy of the License at

    # http://www.apache.org/licenses/LICENSE-2.0

    # Unless required by applicable law or agreed to in writing, software
    # distributed under the License is distributed on an "AS IS" BASIS,
    # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    # See the License for the specific language governing permissions and
    # limitations under the License.
    # see kafka.server.KafkaConfig for additional details and defaults

    ############################# Server Basics #############################

    # The id of the broker. This must be set to a unique integer for each broker.
    broker.id=0

    ############################# Socket Server Settings #############################

    # The port the socket server listens on
    port=9092

    # Hostname the broker will bind to. If not set, the server will bind to all interfaces
    #host.name=localhost

    # Hostname the broker will advertise to producers and consumers. If not set, it uses the
    # value for "host.name" if configured. Otherwise, it will use the value returned from
    # java.net.InetAddress.getCanonicalHostName().
    #advertised.host.name=<hostname routable by clients>

    # The port to publish to ZooKeeper for clients to use. If this is not set,
    # it will publish the same port that the broker binds to.
    #advertised.port=<port accessible by clients>

    # The number of threads handling network requests
    num.network.threads=2

    # The number of threads doing disk I/O
    num.io.threads=8

    # The send buffer (SO_SNDBUF) used by the socket server
    socket.send.buffer.bytes=1048576

    # The receive buffer (SO_RCVBUF) used by the socket server
    socket.receive.buffer.bytes=1048576

    # The maximum size of a request that the socket server will accept (protection against OOM)
    socket.request.max.bytes=104857600


    ############################# Log Basics #############################

    # A comma seperated list of directories under which to store log files
    log.dirs=/kafka-logs

    # The default number of log partitions per topic. More partitions allow greater
    # parallelism for consumption, but this will also result in more files across
    # the brokers.
    num.partitions=2

    ############################# Log Flush Policy #############################

    # Messages are immediately written to the filesystem but by default we only fsync() to sync
    # the OS cache lazily. The following configurations control the flush of data to disk. 
    # There are a few important trade-offs here:
    # 1. Durability: Unflushed data may be lost if you are not using replication.
    # 2. Latency: Very large flush intervals may lead to latency spikes when the flush does occur as there will be a lot of data to flush.
    # 3. Throughput: The flush is generally the most expensive operation, and a small flush interval may lead to exceessive seeks. 
    # The settings below allow one to configure the flush policy to flush data after a period of time or
    # every N messages (or both). This can be done globally and overridden on a per-topic basis.

    # The number of messages to accept before forcing a flush of data to disk
    #log.flush.interval.messages=10000

    # The maximum amount of time a message can sit in a log before we force a flush
    #log.flush.interval.ms=1000

    ############################# Log Retention Policy #############################

    # The following configurations control the disposal of log segments. The policy can
    # be set to delete segments after a period of time, or after a given size has accumulated.
    # A segment will be deleted whenever *either* of these criteria are met. Deletion always happens
    # from the end of the log.

    # The minimum age of a log file to be eligible for deletion
    log.retention.hours=168

    # A size-based retention policy for logs. Segments are pruned from the log as long as the remaining
    # segments don't drop below log.retention.bytes.
    #log.retention.bytes=1073741824

    # The maximum size of a log segment file. When this size is reached a new log segment will be created.
    log.segment.bytes=536870912

    # The interval at which log segments are checked to see if they can be deleted according 
    # to the retention policies
    log.retention.check.interval.ms=60000

    # By default the log cleaner is disabled and the log retention policy will default to just delete segments after their retention expires.
    # If log.cleaner.enable=true is set the cleaner will be enabled and individual logs can then be marked for log compaction.
    log.cleaner.enable=false

    ############################# Zookeeper #############################

    # Zookeeper connection string (see zookeeper docs for details).
    # This is a comma separated host:port pairs, each corresponding to a zk
    # server. e.g. "127.0.0.1:3000,127.0.0.1:3001,127.0.0.1:3002".
    # You can also append an optional chroot string to the urls to specify the
    # root directory for all kafka znodes.
    zookeeper.connect=SparkMaster:2181,SparkWorker1:2181,SparkWorker2:2181

    # Timeout in ms for connecting to zookeeper
    zookeeper.connection.timeout.ms=1000000
    root@SparkMaster:/usr/local/kafka/kafka_2.10-0.8.1.1/config#

       SparkWorker1和SparkWorker2分别只把 broker.id=0改成 broker.id=1 ,broker.id=2。

    即SparkMaster:

      broker.id=0 

      log.dirs=/kafka-logs

       zookeeper.connect=SparkMaster:2181,SparkWorker1:2181,SparkWorker2:2181

    即SparkWorker1:

      broker.id=1 

      log.dirs=/kafka-logs

       zookeeper.connect=SparkMaster:2181,SparkWorker1:2181,SparkWorker2:2181

    即SparkWorker2:

      broker.id=2 

      log.dirs=/kafka-logs

       zookeeper.connect=SparkMaster:2181,SparkWorker1:2181,SparkWorker2:2181

     

     

       kafka的3节点如何启动

      步骤一:先,分别在SparkMaster、SpakrWorker1、SparkWorker2节点上,启动zookeeper进程。

     

    root@SparkMaster:/usr/local/kafka/kafka_2.10-0.8.1.1# bash startkafka.sh

       其他,两台机器,一样的,不多赘述。

  • 相关阅读:
    HTTP协议详解
    ASP.NET 页生命周期概述
    两种典型的双工MEP
    ASP.NET并发处理
    Nodejs
    官方教程
    SQL server 版本
    MVC、MVP、MVVM
    SOHO 创业
    考证
  • 原文地址:https://www.cnblogs.com/shijiaoyun/p/6278676.html
Copyright © 2011-2022 走看看