zoukankan      html  css  js  c++  java
  • poj 3169 Layout

    Layout
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 15121   Accepted: 7265

    Description

    Like everyone else, cows like to stand close to their friends when queuing for feed. FJ has N (2 <= N <= 1,000) cows numbered 1..N standing along a straight line waiting for feed. The cows are standing in the same order as they are numbered, and since they can be rather pushy, it is possible that two or more cows can line up at exactly the same location (that is, if we think of each cow as being located at some coordinate on a number line, then it is possible for two or more cows to share the same coordinate).

    Some cows like each other and want to be within a certain distance of each other in line. Some really dislike each other and want to be separated by at least a certain distance. A list of ML (1 <= ML <= 10,000) constraints describes which cows like each other and the maximum distance by which they may be separated; a subsequent list of MD constraints (1 <= MD <= 10,000) tells which cows dislike each other and the minimum distance by which they must be separated.

    Your job is to compute, if possible, the maximum possible distance between cow 1 and cow N that satisfies the distance constraints.

    Input

    Line 1: Three space-separated integers: N, ML, and MD.

    Lines 2..ML+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at most D (1 <= D <= 1,000,000) apart.

    Lines ML+2..ML+MD+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at least D (1 <= D <= 1,000,000) apart.

    Output

    Line 1: A single integer. If no line-up is possible, output -1. If cows 1 and N can be arbitrarily far apart, output -2. Otherwise output the greatest possible distance between cows 1 and N.

    Sample Input

    4 2 1
    1 3 10
    2 4 20
    2 3 3

    Sample Output

    27

    Hint

    Explanation of the sample:

    There are 4 cows. Cows #1 and #3 must be no more than 10 units apart, cows #2 and #4 must be no more than 20 units apart, and cows #2 and #3 dislike each other and must be no fewer than 3 units apart.

    The best layout, in terms of coordinates on a number line, is to put cow #1 at 0, cow #2 at 7, cow #3 at 10, and cow #4 at 27.

    差分约束系统

    对于两头牛之间距离不大于d 有 dis[a]+d>=dis[b]

    对于两头牛之间距离不小于d 有 dis[a]+d<=dis[b]

    //差分约束系统
    #include <iostream>
    #include <cstring>
    #include <queue>
    #include <vector>
    #include <algorithm>
    #include <cstdio>
    using namespace std;
    #define INF 1044266558
    int n,a,b,u,t,w;
    int dis[1006],vis[1006],in[1006];
    int head[1006];
    struct node{
        int to,w,next;
    }edge[30006];
    int ans=0;
    void add_edge(int u,int v,int w){
        edge[ans].to=v;
        edge[ans].w=w;
        edge[ans].next=head[u];
        head[u]=ans++;
    }
    queue<int>q;
    int bfs(int s){
        memset(dis,62,sizeof(dis));
        memset(vis,0,sizeof(vis));
        memset(in,0,sizeof(in));
        in[s]=1;
        vis[s]=1;
        dis[s]=0;
        q.push(s);
        while(!q.empty()){
            int e=q.front();
            q.pop();
            in[e]=0;
            if(vis[e]>n) return 1;
            for(int i=head[e];i!=-1;i=edge[i].next){
                int u=edge[i].to;
                int s=edge[i].w;
                if(dis[u]>dis[e]+s){
                    dis[u]=dis[e]+s;
                    vis[u]++;
                    if(!in[u]){
                        in[u]=1;
                        q.push(u);
                    }
                }
            }
        }
        return 0;
    }
    int main(){
        scanf("%d%d%d",&n,&a,&b);
        memset(head,-1,sizeof(head));
        for(int i=0;i<a;i++){
            scanf("%d%d%d",&u,&t,&w);
            add_edge(u,t,w);
        }
        for(int i=0;i<b;i++){
            scanf("%d%d%d",&u,&t,&w);
            add_edge(t,u,-w);
        }
        if(bfs(1)) printf("-1
    ");
        else if(dis[n]==INF) printf("-2
    ");
        else printf("%d
    ",dis[n]);
        return 0;
    }
    //差分约束系统
    #include <iostream>
    #include <cstring>
    #include <queue>
    #include <vector>
    #include <algorithm>
    #include <cstdio>
    using namespace std;
    #define INF 1044266558
    typedef pair<int,int> P;
    vector<pair<int,int> >v[1006];
    int n,a,b,u,t,w;
    int dis[1006],vis[1006],in[1006];
    queue<int>q;
    int bfs(int s){
        memset(dis,62,sizeof(dis));
        memset(vis,0,sizeof(vis));
        memset(in,0,sizeof(in));
        in[s]=1;
        vis[s]=1;
        dis[s]=0;
        q.push(s);
        while(!q.empty()){
            int e=q.front();
            q.pop();
            in[e]=0;
            if(vis[e]>n) return 1;
            for(int i=0;i<v[e].size();i++){
                int u=v[e][i].first;
                int s=v[e][i].second;
                if(dis[u]>dis[e]+s){
                    dis[u]=dis[e]+s;
                    vis[u]++;
                    if(!in[u]){
                        in[u]=1;
                        q.push(u);
                    }
                }
            }
        }
        return 0;
    }
    int main(){
        scanf("%d%d%d",&n,&a,&b);
        for(int i=0;i<a;i++){
            scanf("%d%d%d",&u,&t,&w);
            v[u].push_back(P(t,w));
        }
        for(int i=0;i<b;i++){
            scanf("%d%d%d",&u,&t,&w);
            v[t].push_back(P(u,-w));
        }
        if(bfs(1)) printf("-1
    ");
        else if(dis[n]==INF) printf("-2
    ");
        else printf("%d
    ",dis[n]);
        return 0;
    }

     相似题:hdu 3592

  • 相关阅读:
    Delphi 10.3.3解决Android 11闪退
    QuickCore
    Delphi 10.4.1使用传统代码提示方案
    LINUX SHELL条件判断
    C#程序集使用强名字(Strong Name)签名/强名称签名
    ASP.NET Core环境变量和启动设置的配置教程
    ASP.NET Core MVC获取请求的参数方法示例
    Fluentvalidation的基本使用
    netstat & crontab
    Linux/Centos下多种方法查看系统block size大小
  • 原文地址:https://www.cnblogs.com/shinianhuanniyijuhaojiubujian/p/9878287.html
Copyright © 2011-2022 走看看