zoukankan      html  css  js  c++  java
  • python画图—黑板客老师课程学习

    1、介绍

      把每个图都看作一个对象,图中的每一个部分也是对象。——所有的一切都是对象。

      工具——ipython notebook

      是python里边用的最多的2D&3D的会图库,开源免费库,使用方法和matlab类似

      是一个网页版的ipython,可以利用网页的特性展现一些副文本。

      网络版的:https://try.jupyter.org/

      打开之后如下图所示:

      点击右上角new,然后选择python2

      输入程序即可。

      用它就可以不用安装各种库啊啥的,只要有一个浏览器就可以了。还可以写笔记。还可以放在github上。

      作者例子:http://github.com/heibanke/math/blob/master/matplotlib_0ipynb

      本地安装的话:pip install ipython[notebook]

      

      安装完之后敲:ipython notebook之后就自动启动了,然后自动打开浏览器

      

      如果觉着安装各种库比较费劲的话,可以安装集成开发环境:Anaconda

    2、画简单图

      如何打开ipynb的文件呢?

        选择打开方式——在问价夹下C:Portable Python 2.7.6.1AppScriptsjupyter-notebook.exe——选择jupyter-notebook.exe打开

      打开之后是浏览器的形式

      

      %matplotlib inline是用来确定matplotlib的输出方式,这样的话,就不用再新弹出一个窗口来输出图像,而是直接输出到网页里。

      2.1画简单图

        运行时shift+回车键

    from matplotlib import pyplot as plt
    
    x = [1,2,3,1]
    y = [1,3,0,1]
    
    plt.plot(x,y)
    
    #plt.title('Triangle')
    #plt.ylabel('Y axis')
    #plt.xlabel('X axis')
    
    #plt.xticks([1,6])
    #plt.yticks([1,6])
    #plt.xticks([1,6],['a','b'])
    
    #plt.ylim([-1,4])
    #plt.xlim([-1,4])
    
    plt.grid(True,color='r')
    
    plt.show()

      2.2画图的样式

        数据线的样式设置

          颜色缩写    全称
          b          blue
          c          cyan
          g          gree
          k          black
          m          magenta
          r          red
          w          white
          y          yellow
    
    
          线型缩写    含义
          --         --虚线
          -.         -.虚线
          :          .虚线
          -          实线
    
          marker类型参考 
          http://www.labri.fr/perso/nrougier/teaching/matplotlib/#line-properties
    from matplotlib import pyplot as plt
    import numpy as np
    
    x = [1,2,3,1]
    y = [1,3,0,1]
    
    # np.array将列表转换成numpy的数组后可以支持广播broadcast运算
    plt.plot(x,y,color='r',linewidth='2',linestyle='--',marker='D', label='one')
    plt.plot(np.array(x)+1,np.array(y)+1,color='g',linewidth='3',linestyle=':',marker='o', label='two')
    plt.plot(np.array(x)+2,np.array(y)+3,color='k',linewidth='1',linestyle='-.',marker='>', label='three')
    
    plt.grid(True)
    plt.legend()
    #plt.legend(loc='upper left')
    
    plt.show()

      2.3中文

      1. 下载参考资料里的微软雅黑字体msyh.ttf
      2. 将字体拷贝到matplotlib安装位置 /matplotlib/mpl-data/fonts/
      3. 修改配置文件 /matplotlib/mpl-data/matplotlibrc

        1) backend : TkAgg #mac需要修改,windows默认就是TkAgg

        2) font.family : Microsoft YaHei

        3) font.serif : Microsoft YaHei, ......#(后面的不变,只在前面加雅黑字体)

        OK, 大功告成,试试效果吧

     
    # -*- coding: utf-8 -*-
    from matplotlib import pyplot as plt
    import numpy as np
    
    x = [1,2,3,1]
    y = [1,3,0,1]
    
    x2 = np.array(x)+1
    y2 = np.array(y)+1
    
    plt.plot(x,y,'g',label=u'第一个', linewidth=5)
    plt.plot(x2,y2,'c',label=u'第二个',linewidth=5)
    
    plt.title(u'两个三角形')
    plt.ylabel(u'Y轴')
    plt.xlabel(u'X轴')
    
    plt.legend()
    
    plt.show()

      2.4公式

    import matplotlib.pyplot as plt
    fig = plt.figure() #figsize=(10,6)
    ax= fig.add_subplot(111)
    ax.set_xlim([1, 6]);
    ax.set_ylim([1, 9]);
    ax.text(2, 8,  r"$ mu alpha 	au pi lambda omega 	au 
        lambda iota eta $",color='r',fontsize=20);
    ax.text(2, 6, r"$ lim_{x 
    ightarrow 0} frac{1}{x} $",fontsize=20);
    ax.text(2, 4, r"$ a  leq  b  leq  c  Rightarrow  a 
        leq  c$",fontsize=20);
    ax.text(2, 2, r"$ sum_{i=1}^{infty} x_i^2$",fontsize=20);
    ax.text(4, 8, r"$ sin(0) = cos(frac{pi}{2})$",fontsize=20);
    ax.text(4, 6, r"$ sqrt[3]{x} = sqrt{y}$",fontsize=20);
    ax.text(4, 4, r"$ 
    eg (a wedge b) Leftrightarrow 
    eg a 
        vee 
    eg b$");
    ax.text(4, 2, r"$ int_a^b f(x)dx$",fontsize=20);
    plt.show()

        

      

        Annotate各种格式可参考文档

        http://matplotlib.org/users/annotations_guide.html#annotating-with-arrow

    import matplotlib.pyplot as plt
    
    plt.figure(1, figsize=(3,3))
    ax = plt.subplot(111)
    
    ann = ax.annotate("Test",
                      xy=(0.2, 0.2), 
                      xytext=(0.8, 0.8), 
                      size=20, va="center", ha="center",
                      bbox=dict(boxstyle="round4", fc="w"),
                      arrowprops=dict(arrowstyle="-|>",
                                      connectionstyle="arc3,rad=0.2",
                                      fc="r"), 
                      )
    ax.grid(True)
    plt.show()

        

        具体设计成什么样子需要查一下官方文档

      2.5多子图结构

      

    from matplotlib import pyplot as plt
    import numpy as np
    
    # arange类似python里的range
    t = np.arange(0, 5, 0.2)
    
    fig = plt.figure()#figsize=(10,6)
    
    #行, 列, 序号
    ax1 = fig.add_subplot(221) 
    ax2 = fig.add_subplot(222)
    ax3 = fig.add_subplot(212)
    
    ax1.plot(t, t, 'r--', t, t**2, 'bs', t, t**3, 'g^')
    ax1.grid(True)
    ax1.set_title('plot')
    
    ax2.semilogy(t, t, 'r--', t, t**2, 'bs', t, t**3, 'g^')
    ax2.grid(True)
    ax2.set_title('ylog')
    
    ax3.loglog(t, t, 'r--', t, t**2, 'bs', t, t**3, 'g^')
    ax3.grid(True)
    ax3.set_title('loglog')
    
    fig.suptitle('normal vs ylog vs loglog')
    #fig.subplots_adjust(hspace=0.4)
    
    plt.show()

        

     3深度图

      

      图是用来更好的解释数据

      目标:让老板或客户印象深刻,一目了然

        1. 饼状图
        2. 柱状图
        3. 散点图
        4. 概率图
        5. 组合图
        6. 三维数据图
        7. 美化
      3.1饼状图
    import matplotlib.pyplot as plt
    
    plt.figure(figsize=(9,6))
    
    # The slices will be ordered and plotted counter-clockwise.
    labels = [u'直接访问', u'外部链接', u'搜索引擎']
    sizes = [160, 130, 110]
    colors = ['yellowgreen', 'gold', 'lightskyblue']
    
    #explode 爆炸出来
    explode = (0.05, 0.0, 0.0)  
    
    patches, l_texts, p_texts = plt.pie(sizes, explode=explode, labels=labels, colors=colors, labeldistance=0.8,
            autopct='%3.1f%%', shadow=True, startangle=90, pctdistance=0.6)
    
    # 设置x,y轴刻度一致,这样饼图才能是圆的
    #plt.axis('equal')
    #plt.legend()
    
    """
    for t in l_texts:
        t.set_size(20)
    
    for t in p_texts:
        t.set_size(20)
    """
    plt.show()

        


      3.2柱状图

      
    import numpy as np
    from matplotlib import pyplot as plt
    
    plt.figure(figsize=(9,6))
    
    n = 12
    X = np.arange(n)+1
    # numpy.random.uniform(low=0.0, high=1.0, size=None), normal
    Y1 = (1-X/float(n+1)) * np.random.uniform(0.5,1.0,n)
    Y2 = (1-X/float(n+1)) * np.random.uniform(0.5,1.0,n)
    
    # bar and barh
    width = 0.5
    plt.bar(X, Y1, width=width, facecolor='#9999ff', edgecolor='white')
    #plt.bar(X, -Y2, width=width, facecolor='#ff9999', edgecolor='white')
    
    """
    for x,y in zip(X,Y1):
        plt.text(x+0.4, y+0.05, '%.2f' % y, ha='center', va= 'bottom')
        
    for x,y in zip(X,-Y2):
        plt.text(x+0.4, y-0.15, '%.2f' % y, ha='center', va= 'bottom')
    """
    
    #plt.ylim(-1.25,+1.25)
    plt.show()
      

      3.3散点图

      

    from matplotlib import pyplot as plt
    import numpy as np
    
    plt.figure(figsize=(9,6))
    
    n = 1024
    
    # rand 和 randn
    X = np.random.randn(1,n)
    Y = np.random.randn(1,n)
    
    T = np.arctan2(Y,X)
    
    plt.scatter(X,Y, s=75, c=T, alpha=.4, marker='o')
    
    #plt.xlim(-1.5,1.5), plt.xticks([])
    #plt.ylim(-1.5,1.5), plt.yticks([])
    
    plt.show()

        

      3.4概率分布

    from matplotlib import pyplot as plt
    import numpy as np
    
    mu = 0
    sigma = 1
    x = mu + sigma*np.random.randn(10000)
    
    fig,(ax0,ax1)=plt.subplots(ncols=2, figsize=(9,6))
    
    ax0.hist(x, 20, normed=1, histtype='bar', facecolor='g', alpha=0.75)
    ax0.set_title('pdf')
    
    ax1.hist(x, 20, normed=1, histtype='bar', rwidth=0.8, cumulative=True)
    ax1.set_title('cdf')
    
    plt.show()

      

      3.5组合图

    # ref : http://matplotlib.org/examples/pylab_examples/scatter_hist.html
    
    import numpy as np
    import matplotlib.pyplot as plt
    
    # the random data
    x = np.random.randn(1000)
    y = np.random.randn(1000)
    
    # 定义子图区域
    left, width = 0.1, 0.65
    bottom, height = 0.1, 0.65
    bottom_h = left_h = left + width + 0.02
    
    rect_scatter = [left, bottom, width, height]
    rect_histx = [left, bottom_h, width, 0.2]
    rect_histy = [left_h, bottom, 0.2, height]
    
    plt.figure(1, figsize=(6, 6))
    
    # 根据子图区域来生成子图
    axScatter = plt.axes(rect_scatter)
    axHistx = plt.axes(rect_histx)
    axHisty = plt.axes(rect_histy)
    
    # no labels
    #axHistx.xaxis.set_ticks([])
    #axHisty.yaxis.set_ticks([])
    
    # now determine nice limits by hand:
    N_bins=20
    xymax = np.max([np.max(np.fabs(x)), np.max(np.fabs(y))])
    binwidth = xymax/N_bins
    lim = (int(xymax/binwidth) + 1) * binwidth
    nlim = -lim
    
    # 画散点图,概率分布图
    axScatter.scatter(x, y)
    axScatter.set_xlim((nlim, lim))
    axScatter.set_ylim((nlim, lim))
    
    bins = np.arange(nlim, lim + binwidth, binwidth)
    axHistx.hist(x, bins=bins)
    axHisty.hist(y, bins=bins, orientation='horizontal')
    
    # 共享刻度
    axHistx.set_xlim(axScatter.get_xlim())
    axHisty.set_ylim(axScatter.get_ylim())
    
    plt.show()

      

    # ref http://matplotlib.org/examples/showcase/integral_demo.html
    import numpy as np
    import matplotlib.pyplot as plt
    
    def func(x):
        return (x - 3) * (x - 5) * (x - 7) + 85
    
    a, b = 2, 9  # integral limits
    x = np.linspace(0, 10)
    y = func(x)
    
    # 画线
    fig, ax = plt.subplots()
    plt.plot(x, y, 'r', linewidth=2)
    plt.ylim(ymin=0)
    
    # 画阴影区域
    xf = x[np.where((x>a)&(x<b))]
    plt.fill_between(xf, np.zeros(len(xf)), func(xf), color='blue', alpha=.25)
    
    # 画文本
    plt.text(0.5 * (a + b), 30, r"$int_a^b f(x)mathrm{d}x$",
             horizontalalignment='center', fontsize=20)
    
    plt.show()

      

      3.6三维数据图

    import numpy as np
    import matplotlib.pyplot as plt
    
    fig = plt.figure(figsize=(9,6),facecolor='white')
    
    # Number of ring
    n = 50
    size_min = 50
    size_max = 50*50
    
    # Ring position
    P = np.random.rand(n,2)
    
    # Ring colors R,G,B,A
    C = np.ones((n,4)) * (0,0,0,1)
    # Alpha color channel goes from 0 (transparent) to 1 (opaque)
    C[:,3] = np.linspace(0,1,n)
    
    # Ring sizes
    S = np.linspace(size_min, size_max, n)
    
    # Scatter plot
    plt.scatter(P[:,0], P[:,1], s=S, lw = 0.5,
                      edgecolors = C, facecolors='None')
    
    plt.xlim(0,1), plt.xticks([])
    plt.ylim(0,1), plt.yticks([])
    
    plt.show()

        

    from mpl_toolkits.mplot3d import Axes3D
    import numpy as np
    import matplotlib.pyplot as plt
    
    fig = plt.figure(figsize=(9,6))
    ax = fig.add_subplot(111,projection='3d')
    
    z = np.linspace(0, 6, 1000)
    r = 1
    x = r * np.sin(np.pi*2*z)
    y = r * np.cos(np.pi*2*z)
    
    ax.plot(x, y, z, label=u'螺旋线', c='r')
    ax.legend()
    
    # dpi每英寸长度的点数
    plt.savefig('3d_fig.png',dpi=200)
    plt.show()

      

      3d画图种类很多,可参考:http://matplotlib.org/mpl_toolkits/mplot3d/tutorial.html

      其他种类图可参考:http://matplotlib.org/gallery.html

  • 相关阅读:
    Oracle-通过创建索引加快SQL执行效率
    Oracle-DG,MRP进程无法正常应用问题处理,重启大法好
    Oracle-DG,12c pdb创建测试
    Oracle-DG,疑问主库添加日志后,备库未操作主库日志比备库日志数量多,有什么影响?
    Oracle-DG疑问,什么情况下主库会发出一个会话连接备库
    Oracle-DG 主库将log_archive_dest_state_2远程归档线程参数设置为defer,为什么dg还是处于实时同步状态?
    Oracle-rm误删除数据文件,如何强制删除文件启动db
    Oracle-buffer cache过小导致SQL执行时间长
    win10下完全卸载-重装MySQL
    VSCode配置详细教程
  • 原文地址:https://www.cnblogs.com/shixisheng/p/5926504.html
Copyright © 2011-2022 走看看