zoukankan      html  css  js  c++  java
  • Jacobi 矩阵

    求微分其实就是线性化,导数其实就是线性空间之间的线性变换,Jaocibian矩阵本质上就是导数。

    比如,映射f:M	o Nx处的导数df_x就是Mx处的切空间TM_xNf(x)处的切空间TN_{f(x)}之间的线性映射。切空间都是矢量空间,都有基底,所以这个线性变换就是矩阵。在欧氏空间子空间的开集上,切空间就是某个mathbb{R}^n,比如实轴上的切空间就是mathbb{R},曲面上的切空间为mathbb{R}^2。这样一想,函数f:mathbb{R}	omathbb{R}的导数无非就是切空间Tmathbb{R}_x=mathbb{R}到切空间Tmathbb{R}_{f(x)}=mathbb{R}的线性变换,是一个1	imes 1矩阵,同构于一个实数。

    因此,Jacobian矩阵实质上就是切空间之间的基底之间的线性变换,这也是为什么积分中变换坐标时前面会乘以一个Jacobian矩阵的行列式。


    作者:玟清
    链接:https://www.zhihu.com/question/22586361/answer/76610395
    来源:知乎
    著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
     
     

    转自:http://jacoxu.com/jacobian%E7%9F%A9%E9%98%B5%E5%92%8Chessian%E7%9F%A9%E9%98%B5/

  • 相关阅读:
    GCD 并行子线程
    iOS开发>学无止境
    iOS开发>学无止境
    iOS开发>学无止境
    FMDB使用
    递归
    局部变量与全局变量
    函数式编程与参数
    文件的操作
    集合的操作
  • 原文地址:https://www.cnblogs.com/shixisheng/p/7154733.html
Copyright © 2011-2022 走看看