zoukankan      html  css  js  c++  java
  • pandas,apply并行计算的一个demo

    #!/usr/bin/env python
    # -*- coding: utf-8 -*-
    # @Date    : 2018-10-11 17:55:26
    # @Author : Sheldon (thisisscret@qq.com)
    # @blogs   : 谢耳朵的派森笔记
    # @Link     : https://www.cnblogs.com/shld/
    import pandas as pd
    from joblib import Parallel, delayed
    
    def apply_parallel(df, func, n=-2):
        """利用 Parallel 和 delayed 函数实现并行运算,思路是把Dataframe分割喂给包含apply的函数
           @params df:        需要apply的Dataframe
           @params func:      包含apply的函数,(不是apply的参数那个函数),需自己定义,
           @params n:         n为线程数,默认为cpu数-1,-1为cpu数,可自定义
           @return Dataframe: apply参数函数得到的Dataframe
       """ if n is None: n = -1 dflength = len(df) cpunum = cpu_count() if dflength<cpunum: spnum = dflength if n<0: spnum = cpunum+n+1 else: spnum = n or 1 sp = list(range(dflength)[::int(dflength/spnum+0.5)]) sp.append(dflength) slice_gen = (slice(*idx) for idx in zip(sp[:-1],sp[1:])) results = Parallel(n_jobs=n)(delayed(func)(df[slc]) for slc in slice_gen) return pd.concat(results)
  • 相关阅读:
    forEach与迭代器
    JavaMap
    java stack
    Java的Iterator迭代器
    JavaScript基础知识汇总
    Http协议总结
    以太坊交易剔重规则
    localhost与127.0.0.1与0.0.0.0
    boost之asio
    调和级数求和
  • 原文地址:https://www.cnblogs.com/shld/p/9774180.html
Copyright © 2011-2022 走看看