zoukankan      html  css  js  c++  java
  • docker[caffe&&pycaffe]


    0 引言

    今天花了一天,完成了整个caffe的dockerfile编写,其支持python3.6.6,这里主要的注意点是protobuf的版本(在3.6.0之后,只支持c11),还有在制作镜像的时候注意,尽可能少的创建镜像层,并且及时在当前层删除不要的数据,以减少镜像本身大小。

    FROM nvidia/cuda:9.0-cudnn7-devel-centos7
    
    COPY ./caffe /caffe # 将官网github项目下下来,并只修改里面的Makefile.config(下面列出)
    COPY ./Centos-7.repo /etc/yum.repos.d  # 下载163或者阿里云的yum源,以方便加速
    
    ENV LANG=en_US.UTF-8
    ARG PYINSTALL=/usr/local/python3
    ENV PATH=$PYINSTALL/bin:$PATH
    ARG http_proxy=http://xxxxxxxx:xxxx  # 记得修改成你的代理,我们机器需要代理才能上网
    ARG https_proxy=https://xxxxxxx:xxxx
    
    RUN rm -f /etc/yum.repos.d/CentOS-Base.repo  /etc/yum.repos.d/CentOS-CR.repo  /etc/yum.repos.d/CentOS-Debuginfo.repo  /etc/yum.repos.d/CentOS-Media.repo  /etc/yum.repos.d/CentOS-Sources.repo  /etc/yum.repos.d/CentOS-Vault.repo  /etc/yum.repos.d/CentOS-fasttrack.repo && 
        yum clean all && yum makecache && 
        yum -y install https://dl.fedoraproject.org/pub/epel/epel-release-latest-7.noarch.rpm && 
        # 安装python numpy
        yum -y install make zlib-devel openssl-devel bzip2-devel expat-devel gdbm-devel readline-devel sqlite-devel && 
        yum -y install libSM libXrender libXext wget && 
        wget https://www.python.org/ftp/python/3.6.6/Python-3.6.6.tgz -O  /home/Python-3.6.6.tgz && 
        tar -xvf /home/Python-3.6.6.tgz -C /home && 
        cd /home/Python-3.6.6 && 
        ./configure --prefix=$PYINSTALL && 
        make -j32 && make install && 
        ln -s $PYINSTALL/bin/python3 $PYINSTALL/bin/python && 
        /usr/local/python3/bin/pip3 install -i http://pypi.douban.com/simple/ --trusted-host=pypi.douban.com numpy  && 
        /usr/local/python3/bin/pip3 install -i http://pypi.douban.com/simple/ --trusted-host=pypi.douban.com scikit-image  && 
        # 准备caffe依赖
        yum -y install leveldb-devel snappy-devel opencv-devel boost-devel hdf5-devel gflags-devel glog-devel lmdb-devel && 
        yum -y install gflags-devel glog-devel lmdb-devel && 
        yum -y install openblas-devel python36-devel && 
        yum -y groupinstall "Development Tools" "Development Libraries" && 
        # 编译boost 修复libboost_python3.so找不到的问题
        wget https://dl.bintray.com/boostorg/release/1.67.0/source/boost_1_67_0.tar.gz -O /home/boost_1_67_0.tar.gz && 
        tar -xvf /home/boost_1_67_0.tar.gz -C /home && 
        cd  /home/boost_1_67_0 && ./bootstrap.sh --with-libraries=python --with-toolset=gcc && 
        ./b2 cflags='-fPIC' cxxflags='-fPIC' --with-python include=/usr/include/python3.6m && 
        ./b2 install && 
        ln -s /usr/local/lib/libboost_python36.so /usr/lib64/libboost_python3.so && 
        echo /usr/local/lib >> /etc/ld.so.conf.d/caffe.conf && ldconfig && 
        # 安装protobuf
        wget https://github.com/protocolbuffers/protobuf/releases/download/v3.5.1/protobuf-cpp-3.5.1.zip -O /home/protobuf-cpp-3.5.1.zip && 
        cd /home && unzip protobuf-cpp-3.5.1.zip && 
        cd /home/protobuf-3.5.1 && 
        ./configure && make -j32 && make install && ldconfig && 
        wget https://github.com/protocolbuffers/protobuf/releases/download/v3.5.1/protobuf-python-3.5.1.zip -O /home/protobuf-python-3.5.1.zip && 
        cd /home && rm -rf protobuf-3.5.1 && 
        unzip protobuf-python-3.5.1.zip && 
        cd /home/protobuf-3.5.1 && 
        cd python && /usr/local/python3/bin/python3 setup.py build && /usr/local/python3/bin/python3 setup.py install && 
        # 安装caffe
        cd /caffe &&  
        make -j32 && make pycaffe -j32 && 
        # 清空缓存和无用数据
        yum clean all &&\
        rm -rf /home/*
         
    # docker run --cap-add=SYS_PTRACE --security-opt seccomp=unconfined --runtime=nvidia -tid --name zzc_caffe_demo ImageName /bin/bash
    
    

    其中caffe中的Makefile.config为:

    ## Refer to http://caffe.berkeleyvision.org/installation.html
    # Contributions simplifying and improving our build system are welcome!
    
    # cuDNN acceleration switch (uncomment to build with cuDNN).
    USE_CUDNN := 1  # 支持cudnn
    
    # CPU-only switch (uncomment to build without GPU support).
    # CPU_ONLY := 1
    
    # uncomment to disable IO dependencies and corresponding data layers
    USE_OPENCV := 1  # 使用opencv
    # USE_LEVELDB := 0
    # USE_LMDB := 0
    # This code is taken from https://github.com/sh1r0/caffe-android-lib
    # USE_HDF5 := 0
    
    # uncomment to allow MDB_NOLOCK when reading LMDB files (only if necessary)
    #	You should not set this flag if you will be reading LMDBs with any
    #	possibility of simultaneous read and write
    # ALLOW_LMDB_NOLOCK := 1
    
    # Uncomment if you're using OpenCV 3
    # OPENCV_VERSION := 3
    
    # To customize your choice of compiler, uncomment and set the following.
    # N.B. the default for Linux is g++ and the default for OSX is clang++
    # CUSTOM_CXX := g++
    
    # CUDA directory contains bin/ and lib/ directories that we need.
    CUDA_DIR := /usr/local/cuda
    # On Ubuntu 14.04, if cuda tools are installed via
    # "sudo apt-get install nvidia-cuda-toolkit" then use this instead:
    # CUDA_DIR := /usr
    
    # CUDA architecture setting: going with all of them.
    # For CUDA < 6.0, comment the *_50 through *_61 lines for compatibility.
    # For CUDA < 8.0, comment the *_60 and *_61 lines for compatibility.
    # For CUDA >= 9.0, comment the *_20 and *_21 lines for compatibility.
    # 我基于CUDA 9.0,所以删除前面2个,让其从30开始
    CUDA_ARCH :=	-gencode arch=compute_30,code=sm_30 
    		-gencode arch=compute_35,code=sm_35 
    		-gencode arch=compute_50,code=sm_50 
    		-gencode arch=compute_52,code=sm_52 
    		-gencode arch=compute_60,code=sm_60 
    		-gencode arch=compute_61,code=sm_61 
    		-gencode arch=compute_61,code=compute_61
    
    # BLAS choice:
    # atlas for ATLAS (default)
    # mkl for MKL
    # open for OpenBlas
    BLAS := open
    # Custom (MKL/ATLAS/OpenBLAS) include and lib directories.
    # Leave commented to accept the defaults for your choice of BLAS
    # (which should work)!
    BLAS_INCLUDE := /usr/include/openblas
    BLAS_LIB := /usr/lib64
    
    # Homebrew puts openblas in a directory that is not on the standard search path
    # BLAS_INCLUDE := $(shell brew --prefix openblas)/include
    # BLAS_LIB := $(shell brew --prefix openblas)/lib
    
    # This is required only if you will compile the matlab interface.
    # MATLAB directory should contain the mex binary in /bin.
    # MATLAB_DIR := /usr/local
    # MATLAB_DIR := /Applications/MATLAB_R2012b.app
    
    # NOTE: this is required only if you will compile the python interface.
    # We need to be able to find Python.h and numpy/arrayobject.h.
    # PYTHON_INCLUDE := /usr/include/python2.7 
    #		/usr/lib/python2.7/dist-packages/numpy/core/include
    # Anaconda Python distribution is quite popular. Include path:
    # Verify anaconda location, sometimes it's in root.
    # ANACONDA_HOME := $(HOME)/anaconda
    # PYTHON_INCLUDE := $(ANACONDA_HOME)/include 
    		# $(ANACONDA_HOME)/include/python2.7 
    		# $(ANACONDA_HOME)/lib/python2.7/site-packages/numpy/core/include
    
    # Uncomment to use Python 3 (default is Python 2)
    # 下面要注意你安装python的路径
    PYTHON_LIBRARIES := boost_python3 python3.6m
    PYTHON_INCLUDE := /usr/include/python3.6m 
                    /usr/local/python3/lib/python3.6/site-packages/numpy/core/include
    
    # We need to be able to find libpythonX.X.so or .dylib.
    PYTHON_LIB := /usr/lib64
    # PYTHON_LIB := $(ANACONDA_HOME)/lib
    
    # Homebrew installs numpy in a non standard path (keg only)
    # PYTHON_INCLUDE += $(dir $(shell python -c 'import numpy.core; print(numpy.core.__file__)'))/include
    # PYTHON_LIB += $(shell brew --prefix numpy)/lib
    
    # Uncomment to support layers written in Python (will link against Python libs)
    WITH_PYTHON_LAYER := 1
    
    # Whatever else you find you need goes here.
    INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include
    LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib
    
    # If Homebrew is installed at a non standard location (for example your home directory) and you use it for general dependencies
    # INCLUDE_DIRS += $(shell brew --prefix)/include
    # LIBRARY_DIRS += $(shell brew --prefix)/lib
    
    # NCCL acceleration switch (uncomment to build with NCCL)
    # https://github.com/NVIDIA/nccl (last tested version: v1.2.3-1+cuda8.0)
    # USE_NCCL := 1
    
    # Uncomment to use `pkg-config` to specify OpenCV library paths.
    # (Usually not necessary -- OpenCV libraries are normally installed in one of the above $LIBRARY_DIRS.)
    # USE_PKG_CONFIG := 1
    
    # N.B. both build and distribute dirs are cleared on `make clean`
    BUILD_DIR := build
    DISTRIBUTE_DIR := distribute
    
    # Uncomment for debugging. Does not work on OSX due to https://github.com/BVLC/caffe/issues/171
    # DEBUG := 1
    
    # The ID of the GPU that 'make runtest' will use to run unit tests.
    TEST_GPUID := 0
    
    # enable pretty build (comment to see full commands)
    Q ?= @
    

    renference:

  • 相关阅读:
    android:text 文字阴影设置
    android 布局的android:padding 和android:margin的区别
    sqlite的Query方法操作和参数详解
    SQL Server中如何让SQL语句对字符串大小写敏感
    android SQLite数据库(转)
    JAVA中内存分配的问题
    testview属性之详解
    在linux环境下安装VMtools(成功)
    关于配置文件
    C#的几种“属性”概念理解
  • 原文地址:https://www.cnblogs.com/shouhuxianjian/p/10008896.html
Copyright © 2011-2022 走看看