zoukankan      html  css  js  c++  java
  • hdu2588-GCD-(欧拉函数+分解因子)

    The greatest common divisor GCD(a,b) of two positive integers a and b,sometimes written (a,b),is the largest divisor common to a and b,For example,(1,2)=1,(12,18)=6. 
    (a,b) can be easily found by the Euclidean algorithm. Now Carp is considering a little more difficult problem: 
    Given integers N and M, how many integer X satisfies 1<=X<=N and (X,N)>=M.

    InputThe first line of input is an integer T(T<=100) representing the number of test cases. The following T lines each contains two numbers N and M (2<=N<=1000000000, 1<=M<=N), representing a test case.OutputFor each test case,output the answer on a single line.Sample Input

    3
    1 1
    10 2
    10000 72

    Sample Output

    1
    6
    260
    翻译:给出n和m,1<=x<=n,求x符合gcd(x,n)>=m有多少个。
    解题过程:
    令d=gcd(x,n),显然d是n的因子,并且是x和n的最大公因子,则gcd(x/d,n/d)=1
    对于每个d,令y=n/d,找有多少个x/d满足gcd(x/d,y)=1。
    欧拉函数登场,累加y的欧拉函数值。
     1 #include <iostream>
     2 #include<stdio.h>
     3 #include <algorithm>
     4 #include<string.h>
     5 #include<cstring>
     6 #include<math.h>
     7 #define inf 0x3f3f3f3f
     8 #define ll long long
     9 using namespace std;
    10 
    11 ll euler(ll x)
    12 {
    13     ll res=x;
    14     for(ll i=2;i*i<=x;i++)
    15     {
    16         if(x%i==0)
    17         {
    18             res=res/i*(i-1);
    19             while(x%i==0)
    20                x=x/i;
    21         }
    22     }
    23     if(x>1)
    24         res=res/x*(x-1);
    25     return res;
    26 }
    27 
    28 int main()
    29 {
    30 
    31     ll t,n,m,sum;
    32     scanf("%lld",&t);
    33     while(t--)
    34     {
    35         sum=0;
    36         scanf("%lld%lld",&n,&m);
    37         int q=sqrt(n);
    38         ll i;
    39         for(i=1;i*i<=n;i++)
    40         {
    41             if(n%i==0)
    42             {
    43                 if(i>=m)
    44                     sum=sum+euler(n/i);
    45                 if((n/i)>=m)
    46                     sum=sum+euler(i);
    47             }
    48         }
    49         i--;
    50         if(i*i==n && i>=m) 
    51             sum=sum-euler(i);
    52         printf("%lld
    ",sum);
    53     }
    54     return 0;
    55 }


  • 相关阅读:
    是否需要有代码规范
    结对同伴作业复审
    个人作业-四则运算生成
    个人博客-week7
    个人博客作业Week3
    结对编程项目总结
    个人项目总结
    个人博客作业Week2
    第二次结对作业
    个人作业3——个人总结(Alpha阶段)
  • 原文地址:https://www.cnblogs.com/shoulinniao/p/10372119.html
Copyright © 2011-2022 走看看