zoukankan      html  css  js  c++  java
  • 逻辑回归-5.scikit-learn中的逻辑回归

    scikit-learn中的逻辑回归

    构造数据集

    import numpy
    import matplotlib.pyplot as plt
    
    numpy.random.seed(666)
    X = numpy.random.normal(0,1,size=(200,2))
    # 决策边界为二次函数
    y = numpy.array(X[:,0]**2 + X[:,1] < 1.5,dtype='int')
    # 随机改变20个点,目的是添加噪点
    for _ in range(20):
        y[numpy.random.randint(200)] = 1
    
    plt.scatter(X[y==0,0],X[y==0,1],color='red')
    plt.scatter(X[y==1,0],X[y==1,1],color='blue')
    plt.show()
    

    用scikit-learn中的逻辑回归:

    from sklearn.linear_model import LogisticRegression
    from sklearn.pipeline import Pipeline
    from sklearn.preprocessing import PolynomialFeatures
    from sklearn.preprocessing import StandardScaler
    from sklearn.model_selection import train_test_split
    
    def PolynomialLogisticRegression(degree):
        return Pipeline([
            ('poly',PolynomialFeatures(degree=degree)),
            ('stand_scalor',StandardScaler()),
            ('log_reg',LogisticRegression())
        ])
        
    x_train,x_test,y_train,y_test = train_test_split(X,y)
    

    当多项式为2阶时

    poly_log_reg = PolynomialLogisticRegression(2)
    poly_log_reg.fit(x_train,y_train)
    


    算法准确率为92%
    绘制决策边界(决策边界绘制方法见上篇):

    当多项式为20阶时:

    可以看出,随着多项式项的增加,模型变得过拟合了

    改变模型正则化的参数

    scikit-learn中使用正则化的方称为:(Ccdot J( heta )+L1/L2),其中默认系数C为1,正则化项为L2

    • 减小系数C,增大正则化项的比例
    def PolynomialLogisticRegression(degree,penalty='l2',C=1):
        return Pipeline([
            ('poly',PolynomialFeatures(degree=degree)),
            ('stand_scalor',StandardScaler()),
            ('log_reg',LogisticRegression(penalty=penalty,C=C))
        ])
        
    poly_log_reg2 = PolynomialLogisticRegression(20,penalty='l2',C=0.1)
    poly_log_reg2.fit(x_train,y_train)
    

    • 改变正则项L2为L1
    poly_log_reg3 = PolynomialLogisticRegression(20,penalty='l1',C=0.1)
    poly_log_reg3.fit(x_train,y_train)
    

    注:scikit-learn中的逻辑回归中,损失函数系数C,多项式阶数,正则化项等都是算法的超参数,在具体的应用中,需要使用网格搜索,得到最合适的参数组合。

  • 相关阅读:
    安装k8s和NVIDIA环境
    docker使用阿里云加速器
    Ubuntu16安装NVIDIA驱动后重复登录 简单粗暴
    Ubuntu TTY 字体大小 目录颜色 中文乱码 设置
    vim使用记录
    k8s内运行ubuntu容器
    IRelationalOperator接口
    IArea接口(计算多边形面积)
    ITopologicalOperator接口
    通过ArcEngine接口建立凸包(一)
  • 原文地址:https://www.cnblogs.com/shuai-long/p/11503567.html
Copyright © 2011-2022 走看看