zoukankan      html  css  js  c++  java
  • 最新检测程序

    # -*- coding: utf-8 -*-
    import cv2 as cv
    import numpy as np
    from matplotlib import pyplot as plt
    import cv2



    #
    # *针孔 zhenkong Min<1 gate>=0.6 Min>1 gate>=0.8 12张
    # *起粒 qili 5 Min<1 Max<50 gate<=0.6 Min<1 Max>50 gate>=0.4 5张 选 0.4
    # *挂伤 guashang Max<20 0.4<gate<=0.5 20<Max<40 0.1<gate<=0.4 Max>40 gate<=0.2
    # *挂流 gualiu Min<1 Max<50 0.2<gate<=0.5 选0.4





    #C:/Users/Administrator/Desktop/漆膜数据集样本/qimoshujuji/困难的分割图片/gualiu/
    #guashang qili zhenkong



    img = cv.imread('C:/Users/Administrator/Desktop/qimoshujujiance/qimoshujuji/hard_images/00.jpg',0)
    rows, cols = img.shape
    crow,ccol = rows//2 , cols//2



    im_copy_max=np.zeros([rows,cols],dtype=float)
    def max_filte(x,y,step,image_fiter_max3):
    sum_s=[]
    for k in range(-int(step/2),int(step/2)+1):
    for m in range(-int(step/2),int(step/2)+1):
    sum_s.append(image_fiter_max3[x+k][y+m])
    sum_s.sort()

    # if(max(sum_s)>140):
    # value=1
    # else:
    # value=0
    return max(sum_s)

    #return sum_s[(int(step*step/2)+1)]
    def test(Step,image_fiter_max3):
    for i in range(int(Step/2),img.shape[0]-int(Step/2)):
    for j in range(int(Step/2),img.shape[1]-int(Step/2)):
    im_copy_max[i][j]=max_filte(i,j,Step,image_fiter_max3)
    return im_copy_max


    f = np.fft.fft2(img)
    #F(u,v)频域变换
    fshift = np.fft.fftshift(f)
    #将低频移动到图像的中心
    fshift_ima=np.abs(fshift)
    #A(u,v)=|F(u,v)|求频幅
    #magnitude_spectrum = 20*np.log(np.abs(fshift))
    magnitude_spectrum = 20*np.log(np.abs(fshift))

    row_n,col_n=magnitude_spectrum.shape
    magnitude_spectrum_max3=test(2,magnitude_spectrum)
    magnitude_spectrum_max3[0][:]=magnitude_spectrum[0][:]
    magnitude_spectrum_max3[rows-1][:]=magnitude_spectrum[rows-1][:]
    magnitude_spectrum_max3[:,0]=magnitude_spectrum[:,0]
    magnitude_spectrum_max3[:,cols-1]=magnitude_spectrum[:,cols-1]

    #拉伸小取对数L(u,v)=log(A(u,v))
    # laplacian_image=cv2.Laplacian(magnitude_spectrum_max3,cv2.CV_64F)

    #laplacian_image_max3=test(3,laplacian_image)

    #大津阈值分割法

    def OTSU_enhance(img_gray, th_begin=0, th_end=256, th_step=1):
    assert img_gray.ndim == 2, "must input a gary_img"

    max_g = 0
    suitable_th = 0
    for threshold in range(th_begin, th_end, th_step):
    bin_img = img_gray > threshold
    bin_img_inv = img_gray <= threshold
    fore_pix = np.sum(bin_img)
    back_pix = np.sum(bin_img_inv)
    if 0 == fore_pix:
    break
    if 0 == back_pix:
    continue

    w0 = float(fore_pix) / img_gray.size
    u0 = float(np.sum(img_gray * bin_img)) / fore_pix
    w1 = float(back_pix) / img_gray.size
    u1 = float(np.sum(img_gray * bin_img_inv)) / back_pix
    # intra-class variance
    g = w0 * w1 * (u0 - u1) * (u0 - u1)
    if g > max_g:
    max_g = g
    suitable_th = threshold
    return suitable_th
    th2 = OTSU_enhance(magnitude_spectrum_max3, th_begin=0, th_end=256, th_step=1)



    MASK=np.zeros([rows,cols],dtype=bool)



    def max_filte1(x,y,step):
    sum_s=[]
    for k in range(-int(step/2),int(step/2)+1):
    for m in range(-int(step/2),int(step/2)+1):
    sum_s.append(magnitude_spectrum_max3[x+k][y+m])
    sum_s.sort()

    if(max(sum_s)>th2*2):
    value=0
    else:
    value=1
    return value

    # return sum_s[(int(step*step/2)+1)]
    def test1(Step):
    for i in range(int(Step/2),img.shape[0]-int(Step/2)):
    for j in range(int(Step/2),img.shape[1]-int(Step/2)):
    MASK[i][j]=max_filte1(i,j,Step)



    test1(2)


    # plt.subplot(231),plt.imshow(img, cmap = 'gray')
    # plt.title('img'), plt.xticks([]), plt.yticks([])
    # plt.subplot(232),plt.imshow(fshift_ima, cmap = 'gray')
    # plt.title('fshift_ima'), plt.xticks([]), plt.yticks([])
    # plt.subplot(233),plt.imshow(magnitude_spectrum, cmap = 'gray')
    # plt.title('magnitude_spectrum'), plt.xticks([]), plt.yticks([])
    #
    # #
    # plt.subplot(234),plt.imshow(magnitude_spectrum_max3, cmap = 'gray')
    # plt.title('magnitude_spectrum_max3'), plt.xticks([]), plt.yticks([])
    #
    #
    # # plt.subplot(235),plt.imshow(laplacian_image, cmap = 'gray')
    # # plt.title('laplacian_image3'), plt.xticks([]), plt.yticks([])
    #
    #
    # plt.subplot(236),plt.imshow(MASK, cmap = 'gray')
    # plt.title('MASK'), plt.xticks([]), plt.yticks([])
    #
    # plt.show()





    img_bad = cv.imread('C:/Users/Administrator/Desktop/qimoshujujiance/qimoshujuji/hard_images/00.jpg',0)
    rows, cols
    img_bad = cv2.resize(img_bad,(cols,rows),interpolation=cv2.INTER_CUBIC)
    #im_copy_max=im_copy_max.reshape((rows,cols))
    #进行傅里叶变换
    f = np.fft.fft2(img_bad)
    #平移中心
    fshift1 = np.fft.fftshift(f)
    #进行收缩变换
    magnitude_spectrum1 = 20*np.log(np.abs(fshift1))

    fshift=fshift1*MASK

    #平移逆变换
    f_ishift = np.fft.ifftshift(fshift)
    #傅里叶反变换
    img_back = np.fft.ifft2(f_ishift)
    # 取绝对值


    img_back = np.abs(img_back)





    fshift_image=np.abs(fshift)



    #%求最大灰度值

    bad_Max = max(np.max(img_back,axis=0))
    #%求最小灰度值
    bad_Min =min(np.min(img_back,axis=0))

    ret,thresh1=cv2.threshold(img_back,bad_Max*0.3,255,cv2.THRESH_BINARY)

    # plt.subplot(321),plt.imshow(img_bad, cmap = 'gray')
    # plt.title('Input img_bad'), plt.xticks([]), plt.yticks([])
    #
    # plt.subplot(322),plt.imshow(magnitude_spectrum1, cmap = 'gray')
    # plt.title('magnitude_spectrum1'), plt.xticks([]), plt.yticks([])
    #
    #
    #
    # plt.subplot(323),plt.imshow(np.abs(fshift), cmap = 'gray')
    # plt.title('np.abs(fshift)'), plt.xticks([]), plt.yticks([])
    #
    # plt.subplot(324),plt.imshow(img_back, cmap = 'gray')
    # plt.title('img_back)'), plt.xticks([]), plt.yticks([])
    #
    # plt.subplot(325),plt.imshow(thresh1, cmap = 'gray')
    # plt.title('thresh1)'), plt.xticks([]), plt.yticks([])
    #
    # plt.show()

    #求最小外接矩形image = np.array(image,np.uint8)



    img_back2 = np.array(img_back,np.uint8)
    ret2,thresh2=cv2.threshold(img_back2 ,bad_Max*0.3,255,cv2.THRESH_BINARY )
    image2,contours2,hier2=cv2.findContours(thresh2,2,1)
    for c in contours2:
    # find bounding box coordinates
    x,y,w,h = cv2.boundingRect(c)
    cv2.rectangle(img, (x,y), (x+w, y+h), (0, 255, 0), 2)

    # find minimum area
    rect = cv2.minAreaRect(c)
    # calculate coordinates of the minimum area rectangle
    box = cv2.boxPoints(rect)
    # normalize coordinates to integers
    box = np.int0(box)
    # draw contours
    cv2.drawContours(img, [box], 0, (0,0, 255), 3)

    # calculate center and radius of minimum enclosing circle
    (x,y),radius = cv2.minEnclosingCircle(c)
    # cast to integers
    center = (int(x),int(y))
    radius = int(radius)*2
    # draw the circle
    img = cv2.circle(img,center,radius,(0,255,0),2)

    cv2.drawContours(img, contours2, -1, (255, 0, 0), 1)
    cv2.imshow("contours", img)

    cv2.waitKey()
  • 相关阅读:
    Jenkins系列之二——centos 6.9 + JenKins 安装
    查看linux系统是运行在物理机还是虚拟机方法
    Java 的不可变类 (IMMUTABLE CLASS) 和 可变类 (MUTABLE CLASS)
    Java中的mutable和immutable对象实例讲解
    理解Java中的引用传递和值传递
    深入理解Java中的Clone与深拷贝和浅拷贝
    java Clone使用方法详解
    Java对象克隆(Clone)及Cloneable接口、Serializable接口的深入探讨
    赏美-第[001]期-20190504
    赏美-第[000]期
  • 原文地址:https://www.cnblogs.com/shuimuqingyang/p/11666819.html
Copyright © 2011-2022 走看看