题目链接:https://vjudge.net/problem/CodeForces-1205A
题目大意:给你一个n,问你能不能用1~2*n这2*n个数组成一个环,在环上每个相邻的n个数的和相差不大于1
(数学不好只能找规律了QAQ)首先两个相邻的n个数和肯定不会相等的,因为两个相邻的n个数中只有一位不同,而数字没有重复的。那么我们就只能考虑让一个比另一个大1,2*n个元素的环选连续的n个数的和做一个数,那么一共有2*n个情况, 每个元素被计算n次,总和就是(1+2+...+2*n)*nn个数平均数就是总和除以2*n,也就是((1+2*n)*(2*n)/2)/(2*n) = n*(1+2n)/2,当n是偶数的时候,1+2n是奇数,偶数乘奇数还是偶数,这样所有的2*n个数组成的数就不能组成相差都大于1的情况了,当n是奇数的时候,就是奇数乘奇数,那么他的平均数就可以一个是偶数(除以2向下取整),一个是奇数(+1除以2向下取整)所以当n是奇数的时候有解,偶数的时候无解.至于构造吗....就只能打出来符合条件的全排列找规律了......结果是对于下标为1~n,满足如果i是偶数a[i] = 2*i-1, 如果i是奇数,a[i] = 2*i, 至于i+n~2*n的情况则正好相反.
#include<set> #include<map> #include<list> #include<stack> #include<queue> #include<cmath> #include<cstdio> #include<cctype> #include<string> #include<vector> #include<climits> #include<cstring> #include<cstdlib> #include<iostream> #include<algorithm> #define endl '\n' #define rtl rt<<1 #define rtr rt<<1|1 #define lson rt<<1, l, mid #define rson rt<<1|1, mid+1, r #define maxx(a, b) (a > b ? a : b) #define minn(a, b) (a < b ? a : b) #define zero(a) memset(a, 0, sizeof(a)) #define INF(a) memset(a, 0x3f, sizeof(a)) #define IOS ios::sync_with_stdio(false) #define _test printf("~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n") using namespace std; typedef long long ll; typedef pair<int, int> P; typedef pair<ll, ll> P2; const double pi = acos(-1.0); const double eps = 1e-7; const ll MOD = 1000000007LL; const int INF = 0x3f3f3f3f; const int _NAN = -0x3f3f3f3f; const double EULC = 0.5772156649015328; const int NIL = -1; template<typename T> void read(T &x){ x = 0;char ch = getchar();ll f = 1; while(!isdigit(ch)){if(ch == '-')f*=-1;ch=getchar();} while(isdigit(ch)){x = x*10+ch-48;ch=getchar();}x*=f; } const int maxn = 2e5+10; int arr[maxn]; int main(void) { int times = 1e2; while(times--) { ll sum1 = 0, sum2 = 0, sum3 = 0, sum4 = 0; int times2 = 1e6; while(times2--) { ll res = rand()%2; if (times2&1) { sum1 += 7LL*res; sum2 += 3LL*res; } else { sum1 += 3LL*res; sum2 += 7LL*res; } sum3 += 5LL*res; sum4 += 5LL*res; } cout << sum1 << ' ' << sum2 << ' ' << sum3 << ' ' << sum4 << endl; } return 0; }