zoukankan      html  css  js  c++  java
  • 威尔逊定理--HDU2973

    参考博客
    HDU-2973

    题目

    Problem Description

    The math department has been having problems lately. Due to immense amount of unsolicited automated programs which were crawling across their pages, they decided to put Yet-Another-Public-Turing-Test-to-Tell-Computers-and-Humans-Apart on their webpages. In short, to get access to their scientific papers, one have to prove yourself eligible and worthy, i.e. solve a mathematic riddle.

    However, the test turned out difficult for some math PhD students and even for some professors. Therefore, the math department wants to write a helper program which solves this task (it is not irrational, as they are going to make money on selling the program).

    The task that is presented to anyone visiting the start page of the math department is as follows: given a natural n, compute
    img
    where [x] denotes the largest integer not greater than x.

    Input

    The first line contains the number of queries t (t <= 10^6). Each query consist of one natural number n (1 <= n <= 10^6).

    Output

    For each n given in the input output the value of Sn.

    Sample Input

    13
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    100
    1000
    10000
    

    Sample Output

    0
    1
    1
    2
    2
    2
    2
    3
    3
    4
    28
    207
    1609
    

    思路

    威尔逊定理及其逆定理、前缀和

    威尔逊定理:当且仅当p为素数时:

    [(p-1)!equiv -1(mod p) ]

    否则

    [(p-1)!equiv 0(mod p) ]

    [a_n=[frac {(3k+6)!+1}{3k+7}-[frac {(3k+6)!}{3k+7}]] ]

    所以当(3k+7)为素数时,a_n为1,否则为0

    [[frac {(3k+6)!+1}{3k+7}-[frac {(3k+6)!}{3k+7}]]=[frac {kp+p-1+1}{p}-[frac {kp+p-1}{p}]]=[k+1-k]=1 ]

    代码

    #include <iostream>
    #include <cstring>
    #include <cstdio>
    #include <cmath>
    #include <string>
    #include <algorithm>
    
    using namespace std;
    
    typedef long long LL;
    const int maxn=1e6+5;
    const double pi = acos(-1);
    const int mod=1e9+7;
    const int N = 1000005;
    
    int vis[N * 4], p[N * 4];
    int ans[N];
    void Init()\埃式筛
    {
        for(int i = 2;(i - 7) / 3 < N;++i)
        {
            if(!vis[i])
            {
                if((i - 7) % 3 == 0)
                    p[(i - 7) / 3] = 1;
                for(int j = i + i;j <= N * 4;j += i)
                    vis[j] = true;
            }
        }
        for(int i = 1;i < N;++i)
            ans[i] = ans[i - 1] + p[i];
    }
    
    int main()
    {
        Init();
        int T;
        cin >> T;
        while(T--)
        {
            int n;
            cin >> n;
            cout << ans[n] << endl;
        }
        return 0;
    }
    
    

    [素数定理](https://en.wikipedia.org/wiki/Dirichlet's_theorem_on_arithmetic_progressions)
    当a、b为素数时,则形如 a+nb 的素数有无穷多个

  • 相关阅读:
    Netflix Ribbon(负载均衡)介绍
    Annotation 注解
    框架设计的灵魂-反射
    idea maven java.lang.outofmemoryerror gc overhead limit exceeded
    洛谷P4427 [BJOI2018]求和
    洛谷P1196 [NOI2002]银河英雄传说
    CF191C Fools and Roads
    洛谷P2296 寻找道路
    洛谷P3389 【模板】高斯消元法
    洛谷P1351 联合权值
  • 原文地址:https://www.cnblogs.com/shuizhidao/p/10554414.html
Copyright © 2011-2022 走看看