这道题 我没看出来 他只可以往下走,我看到的 8-connected ;所以今天写一下如果是 8-connected 怎么解;
其实说白了这个就是从上到下走一条线到达最后一行的距离最小; 从Map【a】【b】 到Map【a】【b+1】 的距离是Map【a】【b+1】 以此类推:建图即可;
然后在加一个点0,和n+m+1 点这样在建立一下从 0 点到第一行的边,和最后一行到(n+m+1) 的边 求一个从0 到(n+m+1) 的最短路径就好了,
怎么维护最右侧?: Dijkstra 有 队列优化!多以我们可以再这个由下级队列里面 吧col 号也设置进去;这样就可以使答案的字典序最大,也就是最右侧:
代码.cpp
#include <cstdio> #include <cmath> #include <algorithm> #include <cstring> #include <cstdlib> #include <iostream> #include <set> #include <map> #include <vector> #include <queue> #include <string> using namespace std; int n,m; int mat[105][105]; int dd[][2]={-1,1, -1,0, -1,-1, 0,1, 0,-1, 1,1, 1,0, 1,-1 }; int ddd[][2]={1,-1,1,0,1,1}; bool jude(int x,int y) { return x>=1&&x<=n&&y>=1&&y<=m; } int ID(int x,int y) { return (x-1)*m+y; } const int INF = 1000000000; const int maxn =10000+10; struct Edge { int from, to, dist,col; Edge(){} Edge(int from,int to,int dist,int col):from(from),to(to),dist(dist),col(col){} }; struct HeapNode { int d, u , col; HeapNode(){} HeapNode(int d,int u,int col):d(d),u(u),col(col){} bool operator < (const HeapNode& rhs) const { if(d==rhs.d) return col<rhs.col; return d > rhs.d; } }; struct Dijkstra { int n, m; vector<Edge> edges; vector<int> G[maxn]; bool done[maxn]; int d[maxn]; int p[maxn]; void init(int n) { this->n = n; for(int i = 0; i < n; i++) G[i].clear(); edges.clear(); } void AddEdge(int from, int to, int dist,int col) { edges.push_back(Edge(from, to, dist,col)); m = edges.size(); G[from].push_back(m-1); } void dijkstra(int s) { priority_queue<HeapNode> Q; for(int i = 0; i < n; i++) d[i] = INF; d[s] = 0; memset(done, 0, sizeof(done)); Q.push( HeapNode(0, s , 0)) ; while(!Q.empty()) { HeapNode x = Q.top(); Q.pop(); int u = x.u; if(done[u]) continue; done[u] = true; for(int i = 0; i < G[u].size(); i++) { Edge& e = edges[G[u][i]]; if(d[e.to] > d[u] + e.dist) { d[e.to] = d[u] + e.dist; p[e.to] = G[u][i]; Q.push(HeapNode(d[e.to], e.to, e.col)); } } } } void GetShortestPaths(int s, int & dist, vector<int>&paths) { dijkstra(s); for(int i = n-1; i <n; i++) { dist = d[i]; paths.clear(); int t = i; paths.push_back(t); while(t != s) { paths.push_back(edges[p[t]].col); t = edges[p[t]].from; } reverse(paths.begin(), paths.end()); } } }; Dijkstra solver; vector <int> path; int main() { int t,ca=1; scanf("%d",&t); while(t--) { scanf("%d%d",&n,&m); solver.init(n*m+2); for(int i=1;i<=n;i++)for(int j=1;j<=m;j++)scanf("%d",&mat[i][j]); for(int i=1;i<=n;i++)for(int j=1;j<=m;j++) { for(int k=0;k<3;k++) { int x=i+ddd[k][0]; int y=j+ddd[k][1]; if(!jude(x,y)) continue; solver.AddEdge(ID(i,j),ID(x,y),mat[x][y],y); } // 上边有个dd 数组 (用dd数组 8-connected 然后K 变成上届8 就可以了 ) } for(int i=1;i<=m;i++) solver.AddEdge(0,ID(1,i),mat[1][i],i); for(int i=1;i<=m;i++) solver.AddEdge(ID(n,i),n*m+1,0,105); int dis=0; solver.GetShortestPaths(0,dis,path); printf("Case %d ",ca++); for(int i=0;i<path.size()-2;i++) { if(i==0) printf("%d",path[i]); else printf(" %d",path[i]); } puts(""); } return 0; }