对于map的并发操作有HashTable、Collections.synchronizedMap和ConcurrentHashMap三种,到底性能如何呢?
测试代码:
package com.yangyang; import java.util.Collections; import java.util.HashMap; import java.util.Hashtable; import java.util.Map; import java.util.concurrent.ConcurrentHashMap; public class T { /**用于测试的线程数量**/ public static final int threads = 100; /**每个线程往map中塞的数量**/ public static final int NUMBER =100; public static void main(String[] args) throws Exception{ Map<String, Integer> syncHashMap=Collections.synchronizedMap(new HashMap<String, Integer>()); Map<String, Integer> concurrentHashMap=new ConcurrentHashMap<String, Integer>(); Hashtable<String, Integer> hashtable=new Hashtable<String, Integer>(); long totalA = 0; long totalB = 0; long totalC = 0; //循环10此,累计时间,便于观察 for (int i = 0; i <= 10; i++) { // System.out.println("第"+i+"次测试put方法"); totalA += testPut(syncHashMap); totalB += testPut(concurrentHashMap); totalC += testPut(hashtable); } System.out.println("Put time HashMapSync=" + totalA + "ms."); System.out.println("Put time ConcurrentHashMap=" + totalB + "ms."); System.out.println("Put time Hashtable=" + totalC + "ms."); totalA = 0; totalB = 0; totalC = 0; for (int i = 0; i <= 10; i++) { totalA += testGet(syncHashMap); totalB += testGet(concurrentHashMap); totalC += testGet(hashtable); } System.out.println("Get time HashMapSync=" + totalA + "ms."); System.out.println("Get time ConcurrentHashMap=" + totalB + "ms."); System.out.println("Get time Hashtable=" + totalC + "ms."); } private static long testPut(Map<String, Integer> map) throws Exception{ long start = System.currentTimeMillis(); //同时开threads个线程 for (int i = 0; i < threads; i++) { new MapPutThread(map).start(); } while (MapPutThread.counter > 0) { Thread.sleep(1); } return System.currentTimeMillis() - start; } public static long testGet(Map<String, Integer> map) throws Exception { long start = System.currentTimeMillis(); for (int i = 0; i < threads; i++) { new MapGetThread(map).start(); } while (MapGetThread.counter > 0) { Thread.sleep(1); } return System.currentTimeMillis() - start; } } /** * put线程类 * @author shunyang * @date 2015年3月6日 下午4:24:42 */ class MapPutThread extends Thread{ static int counter = 0;//计数器 static Object lock = new Object();//用于同步的对象锁 private Map<String, Integer> map; private String key = this.getId() + ""; MapPutThread(Map<String, Integer> map) { synchronized (lock) { counter++;//每调用一次构建函数,计数器加1 // System.out.println("线程key为:"+key+"的构造函数运行,当前counter为:"+counter); } this.map = map; } @Override public void run() { for (int i = 1; i <= T.NUMBER; i++) { map.put(key, i); // System.out.println("线程key为:"+key+"的第"+i+"个run方法运行,设置的i为::"+i); } synchronized (lock) { counter--;//每当往map中put一个值后,计算器减1 // System.out.println("线程key为:"+key+"的run()运行,当前counter为:"+counter); } } } /** * get线程类 * @author shunyang * @date 2015年3月6日 下午4:24:52 */ class MapGetThread extends Thread { static int counter = 0; static final Object lock = new Object(); private Map<String, Integer> map; private String key = this.getId() + ""; MapGetThread(Map<String, Integer> map) { synchronized (lock) { counter++; } this.map = map; } @Override public void run() { for (int i = 1; i <= T.NUMBER; i++) { map.get(key); } synchronized (lock) { counter--; } } }
当每次启动100个线程,每个线程往map中塞100个数据的时候,结果:
当每次启动1000个线程,每个线程往map中塞1000个数据的时候,结果:
当每次启动10000个线程,每个线程往map中塞10000个数据的时候,结果:
结论:当线程越多时,
ConcurrentHashMap的性能比同步的HashMap快一倍左右
同步的HashMap和Hashtable的性能相当