zoukankan      html  css  js  c++  java
  • keras model.compile 的使用

    语法结构:model.compile(loss='目标函数', optimizer=optimizer, metrics=['accuracy'])

    1.目标函数,也叫损失函数,是网络中的性能函数,它是一个模型必备的两个参数之一。

      目标函数由mse、mae、mape、msle、squared_hinge、hinge、binary_crossentropy、categorical_crossentrop、sparse_categorical_crossentrop等

    详述其中mse、categorical_crossentrop、sparse_categorical_crossentrop

    • mse:均方根误差
    • categorical_crossentropy:亦称作多类的对数损失,注意使用该目标函数时,需要将标签转化为形如(nb_samples, nb_classes)的二值序列
    • sparse_categorical_crossentrop:如上,但接受稀疏标签。注意,使用该函数时仍然需要你的标签与输出值的维度相同,你可能需要在标签数据上增加一个维度:np.expand_dims(y,-1)

    详细参数参考:https://www.cnblogs.com/smuxiaolei/p/8662177.html

  • 相关阅读:
    diff
    tar
    ln
    setfacl
    组件建站
    容器组件
    组件需求
    页面结构
    字体
    轮博图加元素动效的动效ransition
  • 原文地址:https://www.cnblogs.com/shyzh/p/10978609.html
Copyright © 2011-2022 走看看