zoukankan      html  css  js  c++  java
  • 机器学习 之 模糊神经(失败总结)

    弄了一段时间,效果很差! 感觉对其理解不够!看了一些论文,  感觉有点前后矛盾,写了一段时间代码,感觉无法完成!

    这里做一个总结,说明为什么完成不了!

    1. 隶属度  我是用 高其隶属度函数, 感觉公式,导数计算,偏导计算,都已经完成,但误差传播,与,修正时候,总是出错!

    2. 对我的项目感觉没有增益! 我是想用在麻醉深度的CSI训练上,但,深度, 需要用,4个特征量,六个深度,如果按模糊的方式,会有 6*6*6*6的专家规则,超过预期!

    3. 看了很多论文模糊神经的最经常用的是控制,及 电机控制,无功补偿,洗衣机时间控制之类,有明确的专家规则,有明确的输出,这样训练时候,可以很好的控制。

    4. 麻醉深度,无法固定规则可以遵寻,训练也就无重谈起。

    下面是代码:注(运行不成功)


    #include <math.h>

    /////////////////////////////
    // 五层结构
    /////////////////////////////


    #define InputN (2)

    #define HideN_0 (2)
    #define HideN_1 (4)
    #define HideN_2 (4)

    #define OutN (1)


    typedef struct __FuzzyBP_DATA__
    {
    double Input[InputN];
    double Teach[OutN];
    }FuzzyBP_DATA_t;

    typedef struct __FuzzyBP_t__
    {
    double y[OutN];

    double xOut[InputN];
    double hOut_0[HideN_0];
    double hOut_1[HideN_1];
    double hOut_2[HideN_2];
    double yOut[OutN];

    double h0_delta[HideN_0];
    double h1_delta[HideN_1];
    double h2_delta[HideN_2];
    double y_delta[OutN];

    double wh0[InputN][HideN_0]; // 权值
    double wh1[HideN_0][HideN_1]; // 权值
    double wh2[HideN_1][HideN_2]; // 权值
    double v[HideN_2][OutN]; //

    double deltawh0[InputN][HideN_0]; // 权值
    double deltawh1[HideN_0][HideN_1]; // 权值
    double deltawh2[HideN_1][HideN_2]; // 权值
    double deltav[HideN_2][OutN]; //


    double FuzzyC[HideN_0]; //---
    double FuzzyU[HideN_0]; //---

    double deltaFuzzyC[HideN_0];
    double deltaFuzzyU[HideN_0];


    double RuleC[HideN_2];
    double RuleU[HideN_2];

    double deltaRuleC[HideN_2];
    double deltaRuleU[HideN_2];

    double err;
    double errLimit;

    double alpha;
    double beta;

    int maxLoopNum;
    }FuzzyBP_t;


    double fuction_lishu(double x, double c,double u) // 高斯隶属函数
    {
    double tmp ;
    tmp = exp( -(x - c)*(x - c) /(u*u) );
    return tmp;
    }
    double fuction_dao_lishu(double x, double c,double u) // 高斯隶属函数导数
    {
    double tmp ;
    tmp = exp( -(x - c)*(x - c) /(u*u) );
    tmp *= -2*(x - c) /(u*u);
    return tmp;
    }
    double fuction_lishuC(double x, double c,double u) // 高斯隶属函数偏导数 -- c
    {
    double tmp ;
    tmp = exp( -(x - c)*(x - c) /(u*u) );
    tmp *= 2*(x - c)/(u*u);
    return tmp;
    }

    double fuction_lishuU(double x, double c,double u) // 高斯隶属函数偏导数 -- u
    {
    double tmp ;
    tmp = exp( -(x - c)*(x - c) /(u*u) );
    tmp *= -2*(x - c)*(x - c)/(u*u*u);
    return tmp;
    }

    double fuction_sigmod(double val)
    {
    return 1/(1 + exp(-val));
    }

    void FuzzyBP_XunLian(FuzzyBP_t *pBp, FuzzyBP_DATA_t *pData, int dataNum)
    {

    for (int i=0; i<HideN_0; i++)
    {
    pBp->FuzzyC[i] = (rand()/32767.0)*2 - 1;
    pBp->FuzzyU[i] = (rand()/32767.0)*2 - 1;
    pBp->deltaFuzzyC[i] = 0.0;
    pBp->deltaFuzzyU[i] = 0.0;

    }


    for (int i=0; i<HideN_2; i++)
    {
    pBp->RuleC[i] = (rand()/32767.0)*2 - 1;
    pBp->RuleU[i] = (rand()/32767.0)*2 - 1;
    pBp->deltaRuleC[i] = 0.0;
    pBp->deltaRuleU[i] = 0.0;

    }

    for (int i=0; i<InputN; i++)
    {
    for (int j = 0; j<HideN_0; j++)
    {
    pBp->wh0[i][j] = (rand()/32767.0)*2 - 1;
    pBp->deltawh0[i][j] = 0.0;
    }
    }


    for (int i=0; i<HideN_0; i++)
    {
    for (int j = 0; j<HideN_1; j++)
    {
    pBp->wh1[i][j] = (rand()/32767.0)*2 - 1;
    pBp->deltawh1[i][j] = 0.0;
    }
    }

    for (int i=0; i<HideN_1; i++)
    {
    for (int j = 0; j<HideN_2; j++)
    {
    pBp->wh2[i][j] = (rand()/32767.0)*2 - 1;
    pBp->deltawh2[i][j] = 0.0;
    }
    }


    for (int i=0; i<HideN_2; i++)
    {
    for (int j = 0; j<OutN; j++)
    {
    pBp->v[i][j] = (rand()/32767.0)*2 - 1;
    pBp->deltav[i][j] = 0.0;
    }
    }


    int loop = 0;
    while( loop < pBp->maxLoopNum)
    {

    pBp->err = 0.0;

    for (int m = 0; m<dataNum; m++)
    {

    for (int i=0; i<OutN; i++)
    {
    pBp->y[i] = pData[m].Teach[i];
    }


    /////////////////////////////////////
    // 正向传播
    /////////////////////////////////////

    // 输入层
    for (int i=0; i<InputN; i++)
    {
    pBp->xOut[i] = pData[m].Input[i];
    }

    // 隐藏层
    // for (int i=0; i<HideN_0; i++)
    // {
    // double sumTemp = 0.0;
    // for (int j=0; j<InputN; j++)
    // {
    // sumTemp += pBp->wh0[j][i] * pBp->xOut[j];
    // }
    // pBp->hOut_0[i] = tanh(sumTemp);
    // }

    for (int i=0; i<HideN_0; i++)
    {
    pBp->hOut_0[i] = fuction_lishu(pBp->xOut[i], pBp->FuzzyC[i],pBp->FuzzyU[i]);
    }


    for (int i=0; i<HideN_1; i++)
    {
    double sumTemp = 0.0;
    for (int j=0; j<HideN_0; j++)
    {
    sumTemp += pBp->wh1[j][i] * pBp->hOut_0[j];
    }
    pBp->hOut_1[i] = tanh(sumTemp);
    }


    for (int i=0; i<HideN_2; i++)
    {
    double sumTemp = 0.0;
    for (int j=0; j<HideN_1; j++)
    {
    sumTemp += pBp->wh2[j][i] * pBp->hOut_1[j];
    }
    pBp->hOut_2[i] = tanh(sumTemp);
    }


    // 输出层
    for (int i=0; i<OutN; i++)
    {
    double sumTemp = 0.0;
    for (int j=0; j<HideN_2; j++)
    {
    sumTemp += pBp->v[j][i] * pBp->hOut_2[j];
    }
    pBp->yOut[i] = fuction_sigmod(sumTemp);
    }


    /////////////////////////////////////
    // 误差传播
    /////////////////////////////////////
    for (int i=0; i< OutN; i++)
    {
    double errTemp = pBp->y[i] - pBp->yOut[i];
    pBp->y_delta[i] = errTemp * fuction_sigmod(pBp->yOut[i]) * ( 1.0 - fuction_sigmod(pBp->yOut[i]));
    pBp->err += errTemp * errTemp;
    }


    for (int i=0; i<HideN_2; i++)
    {
    double errTemp = 0.0;
    for (int j=0; j<OutN; j++)
    {
    errTemp += pBp->y_delta[j] * pBp->v[i][j];
    }
    pBp->h2_delta[i] = errTemp * (1-tanh(pBp->hOut_2[i])*tanh(pBp->hOut_2[i])) ;
    }


    for (int i=0; i<HideN_1; i++)
    {
    double errTemp = 0.0;
    for (int j=0; j<HideN_2; j++)
    {
    errTemp += pBp->h2_delta[j] * pBp->wh2[i][j];
    }
    pBp->h1_delta[i] = errTemp * (1-tanh(pBp->hOut_1[i])*tanh(pBp->hOut_1[i])) ;
    }


    for (int i=0; i<HideN_0; i++)
    {
    double errTemp = 0.0;
    for (int j=0; j<HideN_1; j++)
    {
    errTemp += pBp->h1_delta[j] * pBp->wh1[i][j];
    }
    pBp->h0_delta[i] = errTemp;
    }



    /////////////////////////////////////
    // 参数修正
    /////////////////////////////////////
    for (int i=0; i<OutN; i++)
    {
    for (int j = 0; j<HideN_2; j++)
    {
    pBp->deltav[j][i] = pBp->alpha * pBp->deltav[j][i] + pBp->beta * pBp->y_delta[i] * pBp->hOut_2[j];
    pBp->v[j][i] += pBp->deltav[j][i];
    }
    }

    for (int i=0; i<HideN_2; i++)
    {
    for (int j = 0; j<HideN_1; j++)
    {
    pBp->deltawh2[j][i] = pBp->alpha * pBp->deltawh2[j][i] + pBp->beta * pBp->h2_delta[i] * pBp->hOut_1[j];
    pBp->wh2[j][i] += pBp->deltawh2[j][i];
    }
    }


    for (int i=0; i<HideN_1; i++)
    {
    for (int j = 0; j<HideN_0; j++)
    {
    pBp->deltawh1[j][i] = pBp->alpha * pBp->deltawh1[j][i] + pBp->beta * pBp->h1_delta[i] * pBp->hOut_0[j];
    pBp->wh1[j][i] += pBp->deltawh1[j][i];
    }
    }

    // for (int i=0; i<HideN_0; i++)
    // {
    // for (int j = 0; j<InputN; j++)
    // {
    // pBp->deltawh0[j][i] = pBp->alpha * pBp->deltawh0[j][i] + pBp->beta * pBp->h0_delta[i] * pBp->xOut[j];
    // pBp->wh0[j][i] += pBp->deltawh0[j][i];
    // }
    // }


    for (int i=0; i<HideN_0; i++)
    {
    pBp->deltaFuzzyC[i] = pBp->alpha * pBp->deltaFuzzyC[i] + pBp->beta * pBp->h0_delta[i] * fuction_lishuC(pBp->xOut[i], pBp->FuzzyC[i], pBp->FuzzyU[i]);
    pBp->FuzzyC[i] += pBp->deltaFuzzyC[i];

    pBp->deltaFuzzyU[i] = pBp->alpha * pBp->deltaFuzzyU[i] + pBp->beta * pBp->h0_delta[i] * fuction_lishuU(pBp->xOut[i], pBp->FuzzyC[i], pBp->FuzzyU[i]);
    pBp->FuzzyU[i] += pBp->deltaFuzzyU[i];

    }

    }

    pBp->err = pBp->err/2;
    if (pBp->err < pBp->errLimit)
    {
    CString tmp;
    tmp.Format("学习成功, 已经收敛! 训练次数: %6d", loop);
    AfxMessageBox(tmp);
    break;
    }


    loop++;
    }


    }


    void FuzzyBP_JianYan(FuzzyBP_t *pBp, FuzzyBP_DATA_t *pData)
    {

    for (int i=0; i<InputN; i++)
    {
    pBp->xOut[i] = pData->Input[i];
    }

    // 隐藏层
    // for (int i=0; i<HideN_0; i++)
    // {
    // double sumTemp = 0.0;
    // for (int j=0; j<InputN; j++)
    // {
    // sumTemp += pBp->wh0[j][i] * pBp->xOut[j];
    // }
    // pBp->hOut_0[i] = tanh(sumTemp);
    // }

    for (int i=0; i<HideN_0; i++)
    {
    pBp->hOut_0[i] = fuction_lishu(pBp->xOut[i], pBp->FuzzyC[i],pBp->FuzzyU[i]);
    }

    for (int i=0; i<HideN_1; i++)
    {
    double sumTemp = 0.0;
    for (int j=0; j<HideN_0; j++)
    {
    sumTemp += pBp->wh1[j][i] * pBp->hOut_0[j];
    }
    pBp->hOut_1[i] = tanh(sumTemp);
    }



    for (int i=0; i<HideN_2; i++)
    {
    double sumTemp = 0.0;
    for (int j=0; j<HideN_1; j++)
    {
    sumTemp += pBp->wh2[j][i] * pBp->hOut_1[j];
    }
    pBp->hOut_2[i] = tanh(sumTemp);
    }

    // 输出层
    for (int i=0; i<OutN; i++)
    {
    double sumTemp = 0.0;
    for (int j=0; j<HideN_2; j++)
    {
    sumTemp += pBp->v[j][i] * pBp->hOut_2[j];
    }
    pBp->yOut[i] = fuction_sigmod(sumTemp);

    pData->Teach[i] = pBp->yOut[i];
    }

    }

    int _tmain(int argc, TCHAR* argv[], TCHAR* envp[])
    {
    int nRetCode = 0;

    srand(time(NULL));


    FuzzyBP_DATA_t data[15] =
    {
    { {1.780, 1.140 },1},
    { {1.960, 1.180 },1},
    { {1.860, 1.200 },1},
    { {1.720, 1.240 },0},
    { {2.000, 1.260 },1},
    { {2.000, 1.280 },1},
    { {1.960, 1.300 },1},
    { {1.740, 1.360 },0},

    { {1.640, 1.380 },0},
    { {1.820, 1.380 },0},
    { {1.900, 1.380 },0},
    { {1.700, 1.400 },0},
    { {1.820, 1.480 },0},
    { {1.820, 1.540 },0},
    { {2.080, 1.560 },0},
    };


    FuzzyBP_t *pBp = new FuzzyBP_t;
    pBp->alpha = 1.00;
    pBp->beta = 0.86;
    pBp->err = 100.0;
    pBp->errLimit = 0.0001;
    pBp->maxLoopNum = 30000;

    // pBp->alpha = 0.90;
    // pBp->beta = 0.26;
    // pBp->errLimit = 0.0001;
    // pBp->maxLoopNum = 5000;
    //


    FuzzyBP_XunLian(pBp, data, 15);

    printf(" 误差 %6.4f \n", pBp->err);


    for (int i=0; i<15; i++)
    {
    printf("%3d %8.5f %8.5f %8.5f ", i, data[i].Input[0], data[i].Input[1], data[i].Teach[0]);
    FuzzyBP_JianYan(pBp,&data[i]);

    printf(" %8.5f \n", data[i].Teach[0]);

    }

    system("pause");


    return nRetCode;
    }

    作者微信号: xh66i88
  • 相关阅读:
    图的建立的两种方法(领接矩阵,领接表)
    蛇形填数
    谁买单,猴子选大王等类似题目不同解法!!!
    根据前序中序写后序(正确写法)
    月份牌
    子网掩码
    android 之 surfaceView和普通View的重绘使用
    android 之 Toast通知的使用
    viewSub惰性装载器
    对文件进行加密
  • 原文地址:https://www.cnblogs.com/signal/p/2888781.html
Copyright © 2011-2022 走看看