public class Solution { public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) { //发现目标节点则通过返回值标记该子树发现了某个目标结点 if(root == null || root == p || root == q) return root; //查看左子树中是否有目标结点,没有为null TreeNode left = lowestCommonAncestor(root.left, p, q); //查看右子树是否有目标节点,没有为null TreeNode right = lowestCommonAncestor(root.right, p, q); //都不为空,说明做右子树都有目标结点,则公共祖先就是本身 if(left!=null&&right!=null) return root; //如果发现了目标节点,则继续向上标记为该目标节点 return left == null ? right : left; } }
思路:从根节点开始遍历,如果node1和node2中的任一个和root匹配,那么root就是最低公共祖先。 如果都不匹配,则分别递归左、右子树,如果有一个 节点出现在左子树,并且另一个节点出现在右子树,则root就是最低公共祖先. 如果两个节点都出现在左子树,则说明最低公共祖先在左子树中,否则在右子树。
感觉很奇妙。引申的问题
如果给定的不是二叉树,而是二叉搜索树呢?会比较简单一点,如果是带有指向父节点的指针的树,可以转化为两个链表求交汇点的问题。
235. Lowest Common Ancestor of a Binary Search Tree
Given a binary search tree (BST), find the lowest common ancestor (LCA) of two given nodes in the BST.
According to the definition of LCA on Wikipedia: “The lowest common ancestor is defined between two nodes v and w as the lowest node in T that has both v and w as descendants (where we allow a node to be a descendant of itself).”
_______6______ / ___2__ ___8__ / / 0 _4 7 9 / 3 5
For example, the lowest common ancestor (LCA) of nodes 2
and 8
is 6
. Another example is LCA of nodes 2
and 4
is 2
, since a node can be a descendant of itself according to the LCA definition.
/** * Definition for a binary tree node. * struct TreeNode { * int val; * TreeNode *left; * TreeNode *right; * TreeNode(int x) : val(x), left(NULL), right(NULL) {} * }; */ class Solution { public: TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) { while((root -> val - p -> val)*(root -> val - q -> val) > 0 ){ root = root -> val > p -> val ? root -> left : root -> right; } return root; } };