zoukankan      html  css  js  c++  java
  • R语言-朴素贝叶斯分类器(1)

    利用给定的数据预测某天("Sunny","Cool","High","Strong")是否打球……

    数据:

    NO Outlook Temperature Humidity Wind Play
    1 Sunny Hot High Weak No
    2 Sunny Hot High Strong No
    3 Overcast Hot High Weak Yes
    4 Rain Mild High Weak Yes
    5 Rain Cool Normal Weak Yes
    6 Rain Cool Normal Strong No
    7 Overcast Cool Normal Strong Yes
    8 Sunny Mild High Weak No
    9 Sunny Cool Normal Weak Yes
    10 Rain Mild Normal Weak Yes
    11 Sunny Mild Normal Strong Yes
    12 Overcast Mild High Strong Yes
    13 Overcast Hot Normal Weak Yes
    14 Rain Mild High Strong No

    代码:

    data=read.table("C:\code\R\playTennis.txt",header=T)
    pre=c("Sunny","Cool","High","Strong","xx")
    sum_Yes=length(which(data$Play=="Yes"))
    sum_No=length(which(data$Play=="No"))
    sum=sum_Yes+sum_No
    #计算yes的概率
    p_O_y=length(which(data$Outlook==pre[1]&data$Play=="Yes"))/sum_Yes
    p_T_y=length(which(data$Temperature==pre[2]&data$Play=="Yes"))/sum_Yes
    p_H_y=length(which(data$Humidity==pre[3]&data$Play=="Yes"))/sum_Yes
    p_W_y=length(which(data$Wind==pre[4]&data$Play=="Yes"))/sum_Yes
    p_y=(sum_Yes/sum)*p_O_y*p_T_y*p_H_y*p_W_y
    #计算No的概率
    p_O_n=length(which(data$Outlook==pre[1]&data$Play=="No"))/sum_No
    p_T_n=length(which(data$Temperature==pre[2]&data$Play=="No"))/sum_No
    p_H_n=length(which(data$Humidity==pre[3]&data$Play=="No"))/sum_No
    p_W_n=length(which(data$Wind==pre[4]&data$Play=="No"))/sum_No
    p_n=(sum_No/sum)*p_O_n*p_T_n*p_H_n*p_W_n
    #结果
    print(p_y)
    print(p_n)

    结果:

    [1] 0.005291005
    [1] 0.02057143
  • 相关阅读:
    操作标签的属性和属性值 table表格
    dom基本获取 标签文本操作
    延时器 清除延时器
    倒计时
    电子时钟
    时间戳
    设定时间的方法
    内置对象Date
    对象的基本特点
    终于有人把云计算、大数据和 AI 讲明白了【深度好文】
  • 原文地址:https://www.cnblogs.com/sklww/p/3507811.html
Copyright © 2011-2022 走看看