zoukankan      html  css  js  c++  java
  • Linux signal 那些事儿(2)【转】

    转自:http://blog.chinaunix.net/uid-24774106-id-4064447.html

    上一篇博文,基本算是给glibc的signal函数翻了个身。现在glibc的signal基本修正了传统的UNIX的一些弊端,我们说signal并没有我们想象的那么不堪。但是signal也有不尽人意的地方。比如信号处理期间,我们期望屏蔽某些信号,而不仅仅是屏蔽自身,这时候signal就不行了。信号既然是进程间通信IPC的一种机制,我们期望获取更多的信息,而不仅仅是signo,这时候signal/kill这个机制就基本不行了。
        上面所说的都是signal的一些毛病,但是这些都不是致命的,致命的问题在于老的signal机制的不可靠。信号分成可靠性信号和非可靠性信号,并不是说用sigaction安装,用sigqueue发送的信号就是可靠性性信号,用signal安装,kill/tkill发送的信号就是非可靠性信号。这种理解是错误的。这在Linux环境进程间通信(二):信号(上)一文中讲的非常清楚了。
        信号值位于[SIGRTMIN,SIGRTMAX] 之间的信号,就是可靠信号,位于[SIGHUP,SIGSYS]之间信号,都是非可靠性信号,与安装函数是signal还是sigaction无关,与发送函数是kill还是sigqueue无关。

        1~31之间的所有信号都称为不可靠信号,原因就在于信号不可排队,如果kernel发现同一个信号已经有挂起信号,当前信号就会被丢弃,就好象从来没有被发送过一样,无法引起信号的传递,也无法让进程执行信号处理函数。这种实现的机理,造成了这些信号的不可靠。这正所谓:我本将心向明月,奈何明月照沟渠。
        为了解决这个问题,Linux引入了实时信号,信号值在[32~64]区间内,或者称之为可靠信号。这种信号,kernel不会ignore,哪怕已经有了好多同一个信号,kernel会把新收到信号放入queue之中,等待被传递出去。
        空口说白话,不是我们的风格,我现在用代码证明之。我参考了Linux Programming Interface 一书的例子,写了两个程序,一个是signal_receiver ,一个是signal_sender.
        先看signal_receiver的code:    

    1. manu@manu-hacks:~/code/c/self/signal$ cat signal_receiver.c
    2. #include <stdio.h>
    3. #include <stdlib.h>
    4. #include <unistd.h>
    5. #include <signal.h>
    6. #include <string.h>
    7. #include <errno.h>


    8. static int sig_cnt[NSIG];
    9. static volatile sig_atomic_t get_SIGINT = 0;

    10. void handler(int signo)
    11. {
    12.     if(signo == SIGINT)
    13.         get_SIGINT = 1;
    14.     else
    15.         sig_cnt[signo]++;
    16. }

    17. int main(int argc,char* argv[])
    18. {
    19.     int i = 0;
    20.     sigset_t blockall_mask ;
    21.     sigset_t pending_mask ;
    22.     sigset_t empty_mask ;
    23.     printf("%s:PID is %ld ",argv[0],getpid());

    24.     
    25.     for(i = 1; i < NSIG; i++)
    26.     {
    27.         if(i == SIGKILL || i == SIGSTOP)
    28.             continue;

    29.         if(signal(i,&handler) == SIG_ERR)
    30.         {
    31.             fprintf(stderr,"signal for signo(%d) failed (%s) ",i,strerror(errno));
    32. //            return -1;
    33.         }
    34.     }

    35.     if(argc > 1)
    36.     {
    37.         int sleep_time = atoi(argv[1]);
    38.         sigfillset(&blockall_mask);

    39.         if(sigprocmask(SIG_SETMASK,&blockall_mask,NULL) == -1)
    40.         {
    41.             fprintf(stderr,"setprocmask to block all signal failed(%s) ",strerror(errno));
    42.             return -2;
    43.         }

    44.         printf("I will sleep %d second ",sleep_time);

    45.         sleep(sleep_time);
    46.         if(sigpending(&pending_mask) == -1)
    47.         {
    48.             fprintf(stderr,"sigpending failed(%s) ",strerror(errno));
    49.             return -2;
    50.         }

    51.         for(i = 1 ; i < NSIG ; i++)
    52.         {
    53.             if(sigismember(&pending_mask,i))
    54.             printf("signo(%d) :%s ",i,strsignal(i));
    55.         }

    56.         sigemptyset(&empty_mask);
    57.         if(sigprocmask(SIG_SETMASK,&empty_mask,NULL) == -1)
    58.         {
    59.             fprintf(stderr,"setprocmask to release all signal failed(%s) ",strerror(errno));
    60.             return -3;
    61.         }
    62.         
    63.     }

    64.     while(!get_SIGINT)
    65.         continue ; //why not use pause ? I will explain later

    66.     for(i = 1; i < NSIG ; i++)
    67.     {
    68.         if(sig_cnt[i] != 0 )
    69.         {
    70.             printf("%s:signal %d caught %d time%s ",
    71.                     argv[0],i,sig_cnt[i],(sig_cnt[i] >1)?"s":"");
    72.         }
    73.     }

    74.     return 0;

    75. }

         因为我们知道,SIGKILL和SIGSTOP这两个信号是不能够定制自己的信号处理函数的,当然也不能block,原因很简单,OS或者说root才是final boss,必须有稳定终结进程的办法。假如所有的信号,进程都能ignore,OS如何终结进程?
        这个signal_receiver会等待所有的信号,接收到某信号后,该信号的捕捉到的次数++,SIGINT会终结进程,进程退出前,会打印信号的捕捉统计。
        如果进程有参数,表示sleep时间,signal_receiver会先屏蔽所有信号(当然,SIGKILL和SIGSTOP并不能被真正屏蔽)。然后sleep 一段时间后,取消信号屏蔽。我们可以想象,在信号屏蔽期间,我们收到的信号,都会在kernel记录下来,但是并不能delivery,这种信号称之挂起信号。如果在sleep期间或者说信号屏蔽期间,我收到SIGUSR1 这个信号1次和10000次,对内核来说,都是没差别的,因为后面的9999次都会被ignore掉。SIGUSR1属于不可靠信号,位图表示有没有挂起信号,有的话,直接ignore,没有的话,则记录在kernel。
        然后我们看下,signal_sender: 

    1. manu@manu-hacks:~/code/c/self/signal$ cat signal_sender.c
    2. #include <stdio.h>
    3. #include <stdlib.h>
    4. #include <getopt.h>
    5. #include <signal.h>
    6. #include <string.h>
    7. #include <errno.h>

    8. void usage()
    9. {
    10.     fprintf(stderr,"USAGE: ");
    11.     fprintf(stderr,"-------------------------------- ");
    12.     fprintf(stderr,"signal_sender pid signo times ");
    13. }

    14. int main(int argc,char* argv[])
    15. {
    16.     pid_t pid = -1 ;
    17.     int signo = -1;
    18.     int times = -1;
    19.     int i ;


    20.     if(argc < 4 )
    21.     {
    22.         usage();
    23.         return -1;
    24.     }
    25.     
    26.     pid = atol(argv[1]);
    27.     signo = atoi(argv[2]);
    28.     times = atoi(argv[3]);

    29.     if(pid <= 0 || times < 0 || signo <1 ||signo >=64 ||signo == 32 || signo ==33)
    30.     {
    31.         usage();
    32.         return -1;
    33.     }

    34.     printf("pid = %ld,signo = %d,times = %d ",pid,signo,times);

    35.     for( i = 0 ; i < times ; i++)
    36.     {
    37.         if(kill(pid,signo) == -1)
    38.         {
    39.             fprintf(stderr, "send signo(%d) to pid(%ld) failed,reason(%s) ",signo,pid,strerror(errno));
    40.             return -2;
    41.         }
    42.     }
    43.     fprintf(stdout,"done ");
    44.     return 0;

    45. }

         signal_sender需要三个参数,pid signo times,就是向拿个进程发送什么信号多少次的意思。如 signal_sender 1234 10 10000,含义是向pid=1234的 进程发送10号信号(SIGUSR1),连续发送10000次。
        有这两个进程,我们就可以实验了  。 

    1. manu@manu-hacks:~/code/c/self/signal$ ./signal_receiver &
    2. [1] 23416
    3. manu@manu-hacks:~/code/c/self/signal$ ./signal_receiver:PID is 23416
    4. signal for signo(32) failed (Invalid argument)
    5. signal for signo(33) failed (Invalid argument)

    6. manu@manu-hacks:~/code/c/self/signal$ ./signal_sender 23416 10 10000
    7. pid = 23416,signo = 10,times = 10000
    8. done
    9. manu@manu-hacks:~/code/c/self/signal$ sleep 20 ; ./signal_sender 23416 2 1
    10. pid = 23416,signo = 2,times = 1
    11. done
    12. ./signal_receiver:signal 10 caught 2507 times
    13. [1]+ Done ./signal_receiver

        signal_receiver等待signal的来临,singal_sender向其发送SIGUSR1 10000次,然后sleep 20秒,确保sig_receiver处理完成。但是我们发现,其实一共才caught信号SIGUSR1  2507次,7000多次的发送都丢失了,所以我们称SIGUSR1 是非可靠信号,存在丢信号的问题。
        俗话说不怕不识货,就怕货比货 ,我们让可靠信号参战,看下效果:

    1. manu@manu-hacks:~/code/c/self/signal$ ./signal_receiver &
    2. [1] 26067
    3. ./signal_receiver:PID is 26067
    4. signal for signo(32) failed (Invalid argument)
    5. signal for signo(33) failed (Invalid argument)
    6. manu@manu-hacks:~/code/c/self/signal$ ./signal_sender 26067 10 10000
    7. pid = 26067,signo = 10,times = 10000
    8. done
    9. manu@manu-hacks:~/code/c/self/signal$ ./signal_sender 26067 36 10000
    10. pid = 26067,signo = 36,times = 10000
    11. done
    12. manu@manu-hacks:~/code/c/self/signal$ ./signal_sender 26067 2 1
    13. pid = 26067,signo = 2,times = 1
    14. done
    15. ./signal_receiver:signal 10 caught 2879 times
    16. ./signal_receiver:signal 36 caught 10000 times
    17. [1]+ Done ./signal_receiver

        可靠性信号36,发送10000次,signal_receiver全部收到,不可靠性信号10,共收到2879次。这个数字是不可预期的,取决于内核进程的调度。
        这个如果还不够直观,我们在比较一次,让signal_receiver先屏蔽所有信号一段时间,如30s,然后解除屏蔽。

    1. manu@manu-hacks:~/code/c/self/signal$ ./signal_receiver 30 &
    2. [1] 27639
    3. manu@manu-hacks:~/code/c/self/signal$ ./signal_receiver:PID is 27639
    4. signal for signo(32) failed (Invalid argument)
    5. signal for signo(33) failed (Invalid argument)
    6. I will sleep 30 second

    7. manu@manu-hacks:~/code/c/self/signal$ ./signal_sender 27639 10 10000
    8. pid = 27639,signo = 10,times = 10000
    9. done
    10. manu@manu-hacks:~/code/c/self/signal$ ./signal_sender 27639 36 10000
    11. pid = 27639,signo = 36,times = 10000
    12. done
    13. manu@manu-hacks:~/code/c/self/signal$
    14. manu@manu-hacks:~/code/c/self/signal$ signo(10) :User defined signal 1
    15. signo(36) :Real-time signal 2

    16. manu@manu-hacks:~/code/c/self/signal$ ./signal_sender 27639 2 1
    17. pid = 27639,signo = 2,times = 1
    18. done
    19. ./signal_receiver:signal 10 caught 1 time
    20. ./signal_receiver:signal 36 caught 10000 times
    21. [1]+ Done ./signal_receiver 30

          这个比较反差比较大,不可靠signal10 共收到1次,可靠性信号36 共caught到10000次。原因就在于sigprocmask将所有的信号都屏蔽了,造成所有的信号都不能delivery。对1~31的信号,内核发现已经有相应的挂起信号,则ignore到新来的信号。但是可靠性信号则不同,会添加队列中去,尽管已经有了相同的信号。需要注意的是,signal pending有上限,并不能无限制的发:

    1. manu@manu-hacks:~/code/c/self/signal$ ulimit -a
    2. core file size (blocks, -c) 0
    3. data seg size (kbytes, -d) unlimited
    4. scheduling priority (-e) 0
    5. file size (blocks, -f) unlimited
    6. pending signals (-i) 15408
    7. max locked memory (kbytes, -l) 64
    8. max memory size (kbytes, -m) unlimited
    9. open files (-n) 1024
    10. pipe size (512 bytes, -p) 8
    11. POSIX message queues (bytes, -q) 819200
    12. real-time priority (-r) 0
    13. stack size (kbytes, -s) 8192
    14. cpu time (seconds, -t) unlimited
    15. max user processes (-u) 15408
    16. virtual memory (kbytes, -v) unlimited
    17. file locks (-x) unlimited

        我发送100万,最终会收到15408个可靠信号:

    1. manu@manu-hacks:~/code/c/self/signal$ ./signal_receiver 30 &
    2. [1] 16488
    3. manu@manu-hacks:~/code/c/self/signal$ ./signal_receiver:PID is 16488
    4. signal for signo(32) failed (Invalid argument)
    5. signal for signo(33) failed (Invalid argument)
    6. I will sleep 30 second

    7. manu@manu-hacks:~/code/c/self/signal$ ./signal_sender 16488 36 1000000
    8. pid = 16488,signo = 36,times = 1000000
    9. done
    10. manu@manu-hacks:~/code/c/self/signal$ signo(36) :Real-time signal 2

    11. manu@manu-hacks:~/code/c/self/signal$ ./signal_sender 16488 2 1
    12. pid = 16488,signo = 2,times = 1
    13. done
    14. ./signal_receiver:signal 36 caught 15408 times
    15. [1]+ Done ./signal_receiver 30

          内核是怎么做到的?
        
        上图是内核中signal相关的数据结构。其中task_struct中有sigpending类型的成员变量pending
        

    1. struct task_struct {
    2.     volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
    3.     void *stack;
    4.     atomic_t usage;
    5.     unsigned int flags; /* per process flags, defined below */
    6.     unsigned int ptrace;
    7.         ...
    8.         ...
    9. /* signal handlers */
    10.     struct signal_struct *signal;
    11.     struct sighand_struct *sighand;

    12.     sigset_t blocked, real_blocked;
    13.     sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
    14.     struct sigpending pending;

    15.        ...
    16. }

    17. struct signal_struct {
    18.       atomic_t     sigcnt;
    19.       atomic_t     live;
    20.       int     nr_threads;
    21.       ...
    22.       ...
    23.       /* shared signal handling: */
    24.       struct sigpending    shared_pending;
    25.       ...
    26. }

    27. struct sigpending {
    28.     struct list_head list;
    29.     sigset_t signal;
    30. };

    31. #define _NSIG        64

    32. #ifdef __i386__
    33. # define _NSIG_BPW    32
    34. #else
    35. # define _NSIG_BPW    64
    36. #endif

    37. #define _NSIG_WORDS    (_NSIG / _NSIG_BPW)

    38. typedef unsigned long old_sigset_t;        /* at least 32 bits */

    39. typedef struct {
    40.     unsigned long sig[_NSIG_WORDS];
    41. } sigset_t;

          task_struct中的pending,和signal->shared_pending都是记录挂起信号的数据结构,读到此处,你可能会迷惑,为何有两个这样的结构。这牵扯到thread与信号的一些问题,我们此处简化,就认为是一个就好,后面讲述线程与信号关系的时候,再展开。
          
        我们看到了,kill也好,tkill也罢,最终都走到了_send_signal.当然了kill系统调用根据pid的情况会分成多个分支如pid >0 pid = 0 pid=-1;pid < 0&pid !=-1,总之了,我的图只绘制了pid >0 的分支。tkill也有类似情况。
        那么kernel是怎么做到的非可靠信号和可靠信号的的这些差别的呢?

    1. static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
    2.             int group, int from_ancestor_ns)
    3. {
    4.     struct sigpending *pending;
    5.     struct sigqueue *q;
    6.     int override_rlimit;
    7.     int ret = 0, result;

    8.     assert_spin_locked(&t->sighand->siglock);

    9.     result = TRACE_SIGNAL_IGNORED;
    10.     if (!prepare_signal(sig, t,
    11.             from_ancestor_ns || (info == SEND_SIG_FORCED)))
    12.         goto ret;

    13.     pending = group ? &t->signal->shared_pending : &t->pending;
    14.     /*
    15.      * Short-circuit ignored signals and support queuing
    16.      * exactly one non-rt signal, so that we can get more
    17.      * detailed information about the cause of the signal.
    18.      */
    19.     result = TRACE_SIGNAL_ALREADY_PENDING;
    20.     if (legacy_queue(pending, sig)) //如果是低于32的信号,并且已经在pending中出现了的信号,就直接返回了,ignore
    21.         goto ret;

    22.     result = TRACE_SIGNAL_DELIVERED;
    23.     /*
    24.      * fast-pathed signals for kernel-internal things like SIGSTOP
    25.      * or SIGKILL.
    26.      */
    27.     if (info == SEND_SIG_FORCED)
    28.         goto out_set;

    29.     /*
    30.      * Real-time signals must be queued if sent by sigqueue, or
    31.      * some other real-time mechanism. It is implementation
    32.      * defined whether kill() does so. We attempt to do so, on
    33.      * the principle of least surprise, but since kill is not
    34.      * allowed to fail with EAGAIN when low on memory we just
    35.      * make sure at least one signal gets delivered and don't
    36.      * pass on the info struct.
    37.      */
    38.     if (sig < SIGRTMIN)
    39.         override_rlimit = (is_si_special(info) || info->si_code >= 0);
    40.     else
    41.         override_rlimit = 0;
          //分配sigqueue结构,并且链入到相应的pending。
    1.     q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE,
    2.         override_rlimit);
    3.     if (q) {
    4.         list_add_tail(&q->list, &pending->list);
    5.         switch ((unsigned long) info) {
    6.         case (unsigned long) SEND_SIG_NOINFO:
    7.             q->info.si_signo = sig;
    8.             q->info.si_errno = 0;
    9.             q->info.si_code = SI_USER;
    10.             q->info.si_pid = task_tgid_nr_ns(current,
    11.                             task_active_pid_ns(t));
    12.             q->info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
    13.             break;
    14.         case (unsigned long) SEND_SIG_PRIV:
    15.             q->info.si_signo = sig;
    16.             q->info.si_errno = 0;
    17.             q->info.si_code = SI_KERNEL;
    18.             q->info.si_pid = 0;
    19.             q->info.si_uid = 0;
    20.             break;
    21.         default:
    22.             copy_siginfo(&q->info, info);
    23.             if (from_ancestor_ns)
    24.                 q->info.si_pid = 0;
    25.             break;
    26.         }

    27.         userns_fixup_signal_uid(&q->info, t);

    28.     } else if (!is_si_special(info)) {
    29.         if (sig >= SIGRTMIN && info->si_code != SI_USER) {
    30.             /*
    31.              * Queue overflow, abort. We may abort if the
    32.              * signal was rt and sent by user using something
    33.              * other than kill().
    34.              */
    35.             result = TRACE_SIGNAL_OVERFLOW_FAIL;
    36.             ret = -EAGAIN;
    37.             goto ret;
    38.         } else {
    39.             /*
    40.              * This is a silent loss of information. We still
    41.              * send the signal, but the *info bits are lost.
    42.              */
    43.             result = TRACE_SIGNAL_LOSE_INFO;
    44.         }
    45.     }

    46. out_set:
    47.     signalfd_notify(t, sig);
    48.     sigaddset(&pending->signal, sig);  //加入位图
    49.     complete_signal(sig, t, group);
    50. ret:
    51.     trace_signal_generate(sig, info, t, group, result);
    52.     return ret;
    53. }

    54. static inline int legacy_queue(struct sigpending *signals, int sig)
    55. {
    56.     return (sig < SIGRTMIN) && sigismember(&signals->signal, sig); //是不可靠信号,并且该信号已经存在挂起信号,

        那么15408的限制是在哪里呢?在__sigqueue_alloc 里面。

    1. static struct sigqueue *
    2. __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
    3. {
    4.     struct sigqueue *q = NULL;
    5.     struct user_struct *user;

    6.     /*
    7.      * Protect access to @t credentials. This can go away when all
    8.      * callers hold rcu read lock.
    9.      */
    10.     rcu_read_lock();
    11.     user = get_uid(__task_cred(t)->user);
    12.     atomic_inc(&user->sigpending);    //计数器+1
    13.     rcu_read_unlock();

    14.     if (override_rlimit ||
    15.      atomic_read(&user->sigpending) <=
    16.             task_rlimit(t, RLIMIT_SIGPENDING)) {
    17.         q = kmem_cache_alloc(sigqueue_cachep, flags);
    18.     } else {
    19.         print_dropped_signal(sig);
    20.     }

    21.     if (unlikely(q == NULL)) {
    22.         atomic_dec(&user->sigpending);
    23.         free_uid(user);
    24.     } else {
    25.         INIT_LIST_HEAD(&q->list);
    26.         q->flags = 0;
    27.         q->user = user;
    28.     }

    29.     return q;
    30. }

         我们看到,legacy_queue就是用来判断是否是非可靠信号(signo低于32),并且相同signo值已经存在在挂起信号之中,如果是,直接返回。
         而对于可靠信号,会分配一个sigqueue的结构,然后讲sigqueue链入到sigpending结构的中链表中。从而就不会丢失信号。当然对pending信号的总数作了限制,限制最多不可超过15408.当然了这个值是可以修改的:
        


    参考文献:
    1 Linux programming interface
    2 深入理解linux内核
    3 linux kernel 3.8.0 内核源码 

  • 相关阅读:
    戴尔英语09年互联网络投放策略规划书
    haproxy相关
    邮送广告
    python和rails交互应用
    ubuntu搭建邮件服务器
    waitr自动化测试
    ruby写爬虫
    free git svn repositories
    网站开发外包遇到的问题
    电影推荐
  • 原文地址:https://www.cnblogs.com/sky-heaven/p/6844543.html
Copyright © 2011-2022 走看看