zoukankan      html  css  js  c++  java
  • floyd算法

    求两个顶点间的最短距离,直觉是这样的问题可以用尝试和枚举的办法来求解,这显然可行,但是我们可以换个方式来看待这个问题,比如, 可以这样描述,“在给定的点集(编号为1~k,k=图中所有的顶点数量)中,i,j之间的最短路径长度"(称为p1), 基于这样一个描述我们可以对问题规模进行缩减得到另一个问题"在给定的点集(编号为1~k-1)中,i,j之间的最短路径长度"(称为p2),  可以再次缩减问题,即"在给定的点集(编号为1~k-2)中,i,j之间的最短路径长度", 照此类推,直到点集不能再缩减(只有i,j),我们便到达了一个终极子问题,如果我们总是可以用一个子问题的解,得到比该子问题多一个顶点的问题的解,那么可以想见,我们可以从终极子问题出发,逐步求解,直到得到母问题的解。下面我们尝试找到这两个点集相差一个的问题之间的关系,以p1和p2的关系为例,用更加简洁的式子来表示问题,p1 表示为ShortestPath(i,j,k), p2表示为ShortestPath(i,j,k-1), p1比p2多了一个编号为k的顶点,那么会有两种可能:

    1. 虽然多了点集中多了一个编号为k的顶点,但ShortestPath(i,j,k) = ShortestPath(i,j,k-1), 也就是说并没有因为加入了新的顶点k而出现新的最短路径

    2. 因为加入了顶点k ShortestPath(i,j,k)有一条新的最短路径,要短于 ShortestPath(i,j,k-1), 我们也可以得出这条新的最短路径必然经过顶点k(如果不经过k,那么最短路径不可能变短),这时最短路径可以表示为ShortestPath(i,k,k-1),+ShortestPath(k,j,k-1)。

    基于以上两种可能,继续得到ShortestPath(i,j,k) = min(ShortestPath(i,j,k-1),ShortestPath(i,k,k-1),+ShortestPath(k,j,k-1))

    相信世界是平的
    谨记四个字“修身养性”
    大江东去浪淘尽英雄,再牛B的人物最后也是一掊土
    向善不是目的,而是抚慰心灵,更多的感受幸福,感谢别人给你行善的机会
    相信老子的话:万物生于有,有生于无,一切的道理都源于一个无法证明的假设
    我是好是坏就自然而然的摆在那里,并不会因为别人的评价而改变什么,我也不需要别人用一张纸来说明我什么,世间最难得的是自由



    支持大额赞助:
  • 相关阅读:
    什么是Redis?
    请写出常用的linux指令
    Maven常用命令有哪些?
    Maven的工程类型有哪些?
    Maven仓库是什么
    什么是Maven?
    Shiro 的优点
    比较 SpringSecurity 和 Shiro
    判断x二进制编码中1的个数的奇偶性
    寻找600851475143的最大素因子的快速算法
  • 原文地址:https://www.cnblogs.com/sky-view/p/5260205.html
Copyright © 2011-2022 走看看