zoukankan      html  css  js  c++  java
  • [分类算法] :朴素贝叶斯 NaiveBayes

    1. 原理和理论基础(参考

    2. Spark代码实例:

    1)windows 单机

    import org.apache.spark.mllib.classification.NaiveBayes
    import org.apache.spark.mllib.linalg.Vectors
    import org.apache.spark.mllib.regression.LabeledPoint
    import org.apache.spark.{SparkConf, SparkContext}
    
    object local_NaiveBayes {
    
      System.setProperty("hadoop.dir.home","E:/zhuangji/winutil/")
    
      def main(args:Array[String]) {
        val conf = new SparkConf().setMaster("local[2]").setAppName("NaiveBayes")
        val sc = new SparkContext(conf)
    
        //initiated data and labeled
        val data = sc.textFile("E:/Java_WS/ScalaDemo/data/sample_naive_bayes_data.txt")
        val parsedData = data.map {
          line =>
            val parts = line.split(',')
            LabeledPoint(parts(0).toDouble, Vectors.dense(parts(1).split( ' ').map(_.toDouble)) )
        }
    
        // split data
        val splits=parsedData.randomSplit(Array(0.6,0.4),seed=11L)
        val training=splits(0)
        val test=splits(1)
    
        //model and calculated precision & accuracy
        val model=NaiveBayes.train(training,lambda=1.0,modelType="multinomial")
    
        val predictionAndLabel=test.map(p=>(model.predict(p.features),p.label))
        val accuracy=1.0*predictionAndLabel.filter(x=>x._1==x._2).count()/test.count()
    
        //save and load model
        model.save(sc,"E:/Spark/models/NaiveBayes")
        val sameModel=NaiveBayesModel.load(sc,"E:/Spark/models/NaiveBayes")
      }
    
    }

    2)集群模式

    需要打包,然后通过spark-submit 提交到yarn client或者cluster中:

    spark-submit --class myNaiveBayes --master yarn ScalaDemo.jar

    import org.apache.spark.mllib.classification.{NaiveBayesModel, NaiveBayes}
    import org.apache.spark.mllib.linalg.Vectors
    import org.apache.spark.mllib.regression.LabeledPoint
    import org.apache.spark.{SparkConf, SparkContext}
    
    object myNaiveBayes {
    
      def main(args:Array[String]) {
    
        val conf = new SparkConf().setAppName("NaiveBayes")
        val sc = new SparkContext(conf)
    
        //initiated data and labeled
        val data = sc.textFile("hdfs://nameservice1/user/hive/spark/data/sample_naive_bayes_data.txt")
        val parsedData = data.map {
          line =>
            val parts = line.split(',')
            LabeledPoint(parts(0).toDouble, Vectors.dense(parts(1).split( ' ').map(_.toDouble)) )
        }
    
        // split data
        val splits=parsedData.randomSplit(Array(0.6,0.4),seed=11L)
        val training=splits(0)
        val test=splits(1)
    
        //model and calculated precision & accuracy
        val model=NaiveBayes.train(training,lambda=1.0,modelType="multinomial")
    
        val predictionAndLabel=test.map(p=>(model.predict(p.features),p.label))
        val accuracy=1.0*predictionAndLabel.filter(x=>x._1==x._2).count()/test.count()
    
        //save and load model
        model.save(sc,"hdfs://nameservice1/user/hive/spark/NaiveBayes/model")
        val sameModel=NaiveBayesModel.load(sc,"hdfs://nameservice1/user/hive/spark/NaiveBayes/model")
      }
    
    }
    

    3)pyspark 代码实例

    可以直接利用spark-submit提交,但注意无法到集群(cluster模式目前不支持独立集群、 mesos集群以及python应用程序)

    spark-submit pyNaiveBayes.py

    #-*- coding:utf-8 -*-
    from pyspark.mllib.classification import NaiveBayes,NaiveBayesModel
    from pyspark.mllib.linalg import Vectors
    from pyspark.mllib.regression import LabeledPoint
    from pyspark import SparkContext
    
    if __name__=="__main__":
        sc=SparkContext(appName="PythonPi")
    
        def parseLine(line):
            parts=line.split(',')
            label=float(parts[0])
            features=Vectors.dense([float(x) for x in parts[1].split(' ')])
            return LabeledPoint(label,features)
        data=sc.textFile("hdfs://nameservice1/user/hive/spark/data/sample_naive_bayes_data.txt").map(parseLine)
    
        training,test=data.randomSplit([0.6,0.4],seed=0)
        model=NaiveBayes.train(training,1.0)
    
        predictionAndLabel=test.map(lambda p:(model.predict(p.features),p.label))
        accuracy=1.0*predictionAndLabel.filter(lambda(x,v):x==v).count()/test.count()
    
        model.save(sc, "hdfs://nameservice1/user/hive/spark/PythonNaiveBayes/model")
        sameModel = NaiveBayesModel.load(sc, "hdfs://nameservice1/user/hive/spark/PythonNaiveBayes/model")
    }
    

    3.  Python 

    from sklearn import naive_bayes
    import random
    
    ##拆分训练集和测试集
    def SplitData(data,M,k,seed):
        test=[]
        train=[]
        random.seed(seed)
        for line in data:
            if random.randint(0,M)==k:
                test.append(''.join(line))
            else:
                train.append(''.join(line))
        return train,test
    
    ##按分割符拆分X,Y
    def parseData(data,delimiter1,delimiter2):
        x=[]
        y=[]
        for line in data:
            parts = line.split(delimiter1)
            x1 = [float(a) for a in parts[1].split(delimiter2)]
            y1 = float(parts[0])
            ##print x1,y1
            x.append(x1)
            y.append(y1)
        return x,y
    
    ##读取数据
    data=open('e:/java_ws/scalademo/data/sample_naive_bayes_data.txt','r')
    training,test=SplitData(data,4,2,10)
    trainingX,trainingY=parseData(training,',',' ')
    testX,testY=parseData(test,',',' ')
    
    ##建模
    model=naive_bayes.GaussianNB()
    model.fit(trainingX,trainingY)
    
    ##评估
    for b in testX:
        print(model.predict(b),b)
  • 相关阅读:
    windows下用python转换markdown到html
    windows下安装pip和easy_install
    Getting Real 摘记
    使iis支持asp.net扩展
    Linux IO模型
    kdissert:linux下的自由脑图软件
    debian下配置双核cpu
    内核:为了fan的健康,我的重新编译记录
    科研在每个人的生活中
    Donald Ervin Knuth:最年轻的图灵奖高德纳
  • 原文地址:https://www.cnblogs.com/skyEva/p/6088653.html
Copyright © 2011-2022 走看看