zoukankan      html  css  js  c++  java
  • 省选模拟44 题解

    A. 跑步

    对于每次修改,$O(n^2)$ 的 dp 是显然的。

    然后发现每次修改这个 dp 的变化量只有 $+1,-1$ 两种取值。

    继续观察性质,可以发现,对于每一行,变化的位置是连续的。

    对于不同行,变化的左端点和右端点都是单调的。

    所以通过树状数组差分实现区间修改,单调指针确定每一行的修改区间就完事了。

    B. 算术

    确实想到了搞个 $k$ 次剩余,但是不知道通过这个东西有这么高的正确率。

    所以问题就简单了,取几个质数,然后计算 $n$ 在这些质数下是否均有 $k$ 次剩余。

    也就是说我们要找是否存在 $x$,满足 $x^k equiv n pmod p$。

    发现,如果取一个 $p$ ,然后满足 $gcd(varphi(p),k) =1$,那么 $k$ 在模 $varphi(p)$ 意义下是存在逆元的,也就是一定存在 $k$ 次剩余。

    所以为了提高正确率,应该尽量选择与 $k$ 的公因数尽量多的 $varphi(p)$。

    考虑使 $p=a*k+1$。

    然后发现有 $x^k equiv n pmod p , x^{a*k} equiv 1 pmod p$

    则 $n^a equiv 1 pmod p$。

    可以发现这两个式子是等价的,所以无需求原根,直接快速幂计算即可。

    C. 求和

    发现维护全部的答案比较难以实现,问题在于每次修改,要改的地方太多了,然后没有办法一次性统计答案。

    所以继续压缩答案可能出现的位置。

    发现有这样一种构造,取出所有的位置 $i$。

    满足 $a_j leq a_i (i-k leq j<i) , a_j < a_i (i<j leq i+k)$。

    可以认为,答案一定选择了这样的位置 $i$ 中的一个。

    于是问题变得简单了,对于单次修改,变化量不超过两个。

    所以分类讨论这个点在变化之后是否为特殊点即可用线段树维护。

  • 相关阅读:
    第二章 逻辑代数及其简化
    小知识:三极管ie==ic+ib
    第二章.2 真值表→表达式的转换
    C# 静态变量及静态函数
    第四章(1):变量静态变量和实例变量
    转义大括号
    能被15整除的最大整数
    动态规划矩阵连乘问题
    [转]三极管的集电结反向偏置电压
    anddroid App, Framework, Sdk编译
  • 原文地址:https://www.cnblogs.com/skyh/p/12489496.html
Copyright © 2011-2022 走看看