zoukankan      html  css  js  c++  java
  • 解读:CombineFileInputFormat类

    MR-Job默认的输入格式FileInputFormat为每一个小文件生成一个切片。CombineFileInputFormat通过将多个“小文件”合并为一个"切片"(在形成切片的过程中也考虑同一节点、同一机架的数据本地性),让每一个Mapper任务可以处理更多的数据,从而提高MR任务的执行速度。详见 MR案例:CombineFileInputFormat

    1).三个重要的属性:

    • maxSplitSize:切片大小最大值。可通过属性 "mapreduce.input.fileinputformat.split.maxsize" 或 CombineFileInputFormat.setMaxInputSplitSize()方法进行设置【不设置,则所有输入只启动一个map任务
    • minSplitSizeNode:同一节点的数据块形成切片时,切片大小的最小值。可通过属性 "mapreduce.input.fileinputformat.split.minsize.per.node" 或 CombineFileInputFormat.setMinSplitSizeNode()方法进行设置
    • minSplitSizeRack:同一机架的数据块形成切片时,切片大小的最小值。可通过属性 "mapreduce.input.fileinputformat.split.minsize.per.rack" 或 CombineFileInputFormat.setMinSplitSizeRack()方法进行设置
    • 大小关系:maxSplitSize > minSplitSizeNode > minSplitSizeRack

    2).切片的形成过程:

     2.1. 不断迭代节点列表,逐个节点 (以数据块为单位) 形成切片(Local Split)

      a. 如果maxSplitSize == 0,则整个节点上的Block数据形成一个切片

      b. 如果maxSplitSize != 0,遍历并累加每个节点上的数据块,如果累加数据块大小 >= maxSplitSize,则将这些数据块形成一个切片。继续该过程,直到剩余数据块累加大小 < maxSplitSize 。则进行下一步

      c. 如果剩余数据块累加大小 >= minSplitSizeNode,则将这些剩余数据块形成一个切片。继续该过程,直到剩余数据块累加大小 < minSplitSizeNode。然后进行下一步,并这些数据块留待后续处理
     
     2.2. 不断迭代机架列表,逐个机架 (以数据块为单位) 形成切片(Rack Split)

      a. 遍历并累加这个机架上所有节点的数据块 (这些数据块即上一步遗留下来的数据块),如果累加数据块大小 >= maxSplitSize,则将这些数据块形成一个切片。继续该过程,直到剩余数据块累加大小<maxSplitSize。则进行下一步

      b. 如果剩余数据块累加大小 >= minSplitSizeRack,则将这些剩余数据块形成一个切片。如果剩余数据块累加大小 < minSplitSizeRack,则这些数据块留待后续处理     

     2.3. 遍历并累加所有Rack上的剩余数据块,如果累加数据块大小 >= maxSplitSize,则将这些数据块形成一个切片。继续该过程,直到剩余数据块累加大小< maxSplitSize。则进行下一步
     
     2.4. 将最终剩余的数据块形成一个切片。
    Demo:
    规定maxSplit=100 > minSizeNode=50 > minSizeRack=30
    原有文件Rack01:{[30,60,70] [80,110]}   Rack02:{170}  
    处理过程
    30+60+70 > 100 ? 100+60  80+110 > 100 ? 100+90  170 > 100 ? 100+70  
      --->  3个数据切片,以及Rack01:{[60] [90]}  Rack02:{70}  
        --->  60 > 50 ? 50+10  90 > 50 ? 50+40  70 > 50 ? 50+20  
          --->  3+3个数据切片,以及Rack01:{[10] [40]}  Rack02:{20}  
            --->  10+40 < 100 ?0  20 < 100 ? 0  
              --->  3+3+0个数据切片,以及Rack01:{50}  Rack02:{20}  
                --->  50+20 > 30 ? 30+30+10  
                  --->  3+3+0+3个数据切片
      

    3).源码:getSplit()

      @Override
      public List<InputSplit> getSplits(JobContext job) 
        throws IOException {
        long minSizeNode = 0;
        long minSizeRack = 0;
        long maxSize = 0;
        Configuration conf = job.getConfiguration();
    
        // 通过setxxxSplitSize()方法设置的参数值会覆盖掉从配置文件中读取的参数值
        if (minSplitSizeNode != 0) {
          minSizeNode = minSplitSizeNode;
        } else {
          minSizeNode = conf.getLong(SPLIT_MINSIZE_PERNODE, 0);
        }
        if (minSplitSizeRack != 0) {
          minSizeRack = minSplitSizeRack;
        } else {
          minSizeRack = conf.getLong(SPLIT_MINSIZE_PERRACK, 0);
        }
        if (maxSplitSize != 0) {
          maxSize = maxSplitSize;
        } else {

    //如果maxSize没有配置,整个Node生成一个Split
    maxSize
    = conf.getLong("mapreduce.input.fileinputformat.split.maxsize", 0);
    } if (minSizeNode != 0 && maxSize != 0 && minSizeNode > maxSize) { throw new IOException("Minimum split size pernode " + minSizeNode + " cannot be larger than maximum split size " + maxSize); } if (minSizeRack != 0 && maxSize != 0 && minSizeRack > maxSize) { throw new IOException("Minimum split size per rack " + minSizeRack + " cannot be larger than maximum split size " + maxSize); } if (minSizeRack != 0 && minSizeNode > minSizeRack) { throw new IOException("Minimum split size per node " + minSizeNode + " cannot be larger than minimum split " + "size per rack " + minSizeRack); } //获取输入路径中的所有文件 List<FileStatus> stats = listStatus(job); List<InputSplit> splits = new ArrayList<InputSplit>(); if (stats.size() == 0) { return splits; } // 迭代为每个过滤池中的文件生成切片 //一个切片中的数据块只可能来自于同一个过滤池,但可以来自同一个过滤池中的不同文件 for (MultiPathFilter onepool : pools) { ArrayList<FileStatus> myPaths = new ArrayList<FileStatus>();
    //获取满足当前过滤池实例onepool的所有文件myPaths for (Iterator<FileStatus> iter = stats.iterator(); iter.hasNext();) { FileStatus p = iter.next(); if (onepool.accept(p.getPath())) { myPaths.add(p); // add it to my output set iter.remove(); } } //为mypaths中的文件生成切片 getMoreSplits(job, myPaths, maxSize, minSizeNode, minSizeRack, splits); } //为不属于任何过滤池的文件生成切片 getMoreSplits(job, stats, maxSize, minSizeNode, minSizeRack, splits); //free up rackToNodes map rackToNodes.clear(); return splits; }

    4).源码:getMoreSplits()

    无论是满足某过滤池实例 onePool 条件的文件,还是不属于任何过滤池的文件,可以笼统地理解为 "一批文件",getMoreSplits()就是为这一批文件生成切片的。 

    /**
       * Return all the splits in the specified set of paths
       */
      private void getMoreSplits(JobContext job, List<FileStatus> stats,
                                 long maxSize, long minSizeNode, long minSizeRack,
                                 List<InputSplit> splits)
        throws IOException {
        Configuration conf = job.getConfiguration();
    
        //OneFileInfo类:代表一个文件 
        OneFileInfo[] files;
    
    //rackToBlocks:机架和数据块的对应关系,即某一个机架上有哪些数据块; HashMap<String, List<OneBlockInfo>> rackToBlocks = new HashMap<String, List<OneBlockInfo>>(); //blockToNodes:数据块与节点的对应关系,即一块数据块的“拷贝”位于哪些节点 HashMap<OneBlockInfo, String[]> blockToNodes = new HashMap<OneBlockInfo, String[]>(); //nodeToBlocks:节点和数据块的对应关系,即某一个节点上有哪些数据块; HashMap<String, Set<OneBlockInfo>> nodeToBlocks = new HashMap<String, Set<OneBlockInfo>>(); files = new OneFileInfo[stats.size()]; if (stats.size() == 0) { return; } /** * 迭代这"一批文件",为每一个文件构建OneFileInfo对象 * OneFileInfo对象在构建过程中维护了上述三个对应关系的信息。 * 迭代完成之后,即可以认为数据块、节点、机架相互之间的对应关系已经建立完毕 * 接下来可以根据这些信息生成切片 */ long totLength = 0; int i = 0; for (FileStatus stat : stats) { files[i] = new OneFileInfo(stat, conf, isSplitable(job, stat.getPath()), rackToBlocks, blockToNodes, nodeToBlocks, rackToNodes, maxSize); totLength += files[i].getLength(); } //切片的形成过程 createSplits(nodeToBlocks, blockToNodes, rackToBlocks, totLength, maxSize, minSizeNode, minSizeRack, splits); }

    5).源码:createSplits()

      @VisibleForTesting
      void createSplits(Map<String, Set<OneBlockInfo>> nodeToBlocks,
                         Map<OneBlockInfo, String[]> blockToNodes,
                         Map<String, List<OneBlockInfo>> rackToBlocks,
                         long totLength,
                         long maxSize,
                         long minSizeNode,
                         long minSizeRack,
                         List<InputSplit> splits                     
                        ) {
    
        //保存当前切片所包含的数据块
        ArrayList<OneBlockInfo> validBlocks = new ArrayList<OneBlockInfo>();
    
        //保存当前切片的大小
        long curSplitSize = 0;
        
        int totalNodes = nodeToBlocks.size();
        long totalLength = totLength;
    
        Multiset<String> splitsPerNode = HashMultiset.create();
        Set<String> completedNodes = new HashSet<String>();
        
        while(true) {
          // it is allowed for maxSize to be 0. Disable smoothing load for such cases
    
          //逐个节点(数据块)形成切片
          // process all nodes and create splits that are local to a node. Generate
          // one split per node iteration, and walk over nodes multiple times to
          // distribute the splits across nodes. 
          for (Iterator<Map.Entry<String, Set<OneBlockInfo>>> iter = nodeToBlocks
              .entrySet().iterator(); iter.hasNext();) {
            Map.Entry<String, Set<OneBlockInfo>> one = iter.next();
            
            String node = one.getKey();
            
            // Skip the node if it has previously been marked as completed.
            if (completedNodes.contains(node)) {
              continue;
            }
    
            Set<OneBlockInfo> blocksInCurrentNode = one.getValue();
    
            // for each block, copy it into validBlocks. Delete it from
            // blockToNodes so that the same block does not appear in
            // two different splits.
            Iterator<OneBlockInfo> oneBlockIter = blocksInCurrentNode.iterator();
            while (oneBlockIter.hasNext()) {
              OneBlockInfo oneblock = oneBlockIter.next();
              
              // Remove all blocks which may already have been assigned to other
              // splits.
              if(!blockToNodes.containsKey(oneblock)) {
                oneBlockIter.remove();
                continue;
              }
            
              validBlocks.add(oneblock);
              blockToNodes.remove(oneblock);
              curSplitSize += oneblock.length;
    
              // if the accumulated split size exceeds the maximum, then
              // create this split.
    
              //如果数据块累积大小大于或等于maxSize,则形成一个切片
              if (maxSize != 0 && curSplitSize >= maxSize) {
                // create an input split and add it to the splits array
                addCreatedSplit(splits, Collections.singleton(node), validBlocks);
                totalLength -= curSplitSize;
                curSplitSize = 0;
    
                splitsPerNode.add(node);
    
                // Remove entries from blocksInNode so that we don't walk these
                // again.
                blocksInCurrentNode.removeAll(validBlocks);
                validBlocks.clear();
    
                // Done creating a single split for this node. Move on to the next
                // node so that splits are distributed across nodes.
                break;
              }
    
            }
            if (validBlocks.size() != 0) {
              // This implies that the last few blocks (or all in case maxSize=0)
              // were not part of a split. The node is complete.
              
              // if there were any blocks left over and their combined size is
              // larger than minSplitNode, then combine them into one split.
              // Otherwise add them back to the unprocessed pool. It is likely
              // that they will be combined with other blocks from the
              // same rack later on.
              // This condition also kicks in when max split size is not set. All
              // blocks on a node will be grouped together into a single split.
    
              // 如果剩余数据块大小大于或等于minSizeNode,则将这些数据块构成一个切片;
           // 如果剩余数据块大小小于minSizeNode,则将这些数据块归还给blockToNodes,交由后期“同一机架”过程处理
    
              if (minSizeNode != 0 && curSplitSize >= minSizeNode
                  && splitsPerNode.count(node) == 0) {
                // haven't created any split on this machine. so its ok to add a
                // smaller one for parallelism. Otherwise group it in the rack for
                // balanced size create an input split and add it to the splits
                // array
                addCreatedSplit(splits, Collections.singleton(node), validBlocks);
                totalLength -= curSplitSize;
                splitsPerNode.add(node);
                // Remove entries from blocksInNode so that we don't walk this again.
                blocksInCurrentNode.removeAll(validBlocks);
                // The node is done. This was the last set of blocks for this node.
              } else {
                // Put the unplaced blocks back into the pool for later rack-allocation.
                for (OneBlockInfo oneblock : validBlocks) {
                  blockToNodes.put(oneblock, oneblock.hosts);
                }
              }
              validBlocks.clear();
              curSplitSize = 0;
              completedNodes.add(node);
            } else { // No in-flight blocks.
              if (blocksInCurrentNode.size() == 0) {
                // Node is done. All blocks were fit into node-local splits.
                completedNodes.add(node);
              } // else Run through the node again.
            }
          }
    
          // Check if node-local assignments are complete.
          if (completedNodes.size() == totalNodes || totalLength == 0) {
            // All nodes have been walked over and marked as completed or all blocks
            // have been assigned. The rest should be handled via rackLock assignment.
            LOG.info("DEBUG: Terminated node allocation with : CompletedNodes: "
                + completedNodes.size() + ", size left: " + totalLength);
            break;
          }
        }
        //逐个机架(数据块)形成切片
        // if blocks in a rack are below the specified minimum size, then keep them
        // in 'overflow'. After the processing of all racks is complete, these 
        // overflow blocks will be combined into splits.
        //overflowBlocks用于保存“同一机架”过程处理之后剩余的数据块
        ArrayList<OneBlockInfo> overflowBlocks = new ArrayList<OneBlockInfo>();
        Set<String> racks = new HashSet<String>();
    
        // Process all racks over and over again until there is no more work to do.
        while (blockToNodes.size() > 0) {
    
          // Create one split for this rack before moving over to the next rack. 
          // Come back to this rack after creating a single split for each of the 
          // remaining racks.
          // Process one rack location at a time, Combine all possible blocks that
          // reside on this rack as one split. (constrained by minimum and maximum
          // split size).
    
          //依次处理每个机架 
          for (Iterator<Map.Entry<String, List<OneBlockInfo>>> iter = 
               rackToBlocks.entrySet().iterator(); iter.hasNext();) {
    
            Map.Entry<String, List<OneBlockInfo>> one = iter.next();
            racks.add(one.getKey());
            List<OneBlockInfo> blocks = one.getValue();
    
            // for each block, copy it into validBlocks. Delete it from 
            // blockToNodes so that the same block does not appear in 
            // two different splits.
            boolean createdSplit = false;
    
            //依次处理该机架的每个数据块
            for (OneBlockInfo oneblock : blocks) {
              if (blockToNodes.containsKey(oneblock)) {
                validBlocks.add(oneblock);
                blockToNodes.remove(oneblock);
                curSplitSize += oneblock.length;
          
                // if the accumulated split size exceeds the maximum, then 
                // create this split.如果数据块累积大小大于或等于maxSize,则形成一个切片
                if (maxSize != 0 && curSplitSize >= maxSize) {
                  // create an input split and add it to the splits array
                  addCreatedSplit(splits, getHosts(racks), validBlocks);
                  createdSplit = true;
                  break;
                }
              }
            }
    
            // if we created a split, then just go to the next rack
            if (createdSplit) {
              curSplitSize = 0;
              validBlocks.clear();
              racks.clear();
              continue;
            }
    
            if (!validBlocks.isEmpty()) {
    
              //如果剩余数据块大小大于或等于minSizeRack,则将这些数据块构成一个切片
              if (minSizeRack != 0 && curSplitSize >= minSizeRack) {
                // if there is a minimum size specified, then create a single split
                // otherwise, store these blocks into overflow data structure
                addCreatedSplit(splits, getHosts(racks), validBlocks);
              } else {
                // There were a few blocks in this rack that 
                // remained to be processed. Keep them in 'overflow' block list. 
                // These will be combined later.
      
                //如果剩余数据块大小小于minSizeRack,则将这些数据块加入overflowBlocks
                overflowBlocks.addAll(validBlocks);
              }
            }
            curSplitSize = 0;
            validBlocks.clear();
            racks.clear();
          }
        }
    
        assert blockToNodes.isEmpty();
        assert curSplitSize == 0;
        assert validBlocks.isEmpty();
        assert racks.isEmpty();
    
        //遍历并累加剩余数据块
        for (OneBlockInfo oneblock : overflowBlocks) {
          validBlocks.add(oneblock);
          curSplitSize += oneblock.length;
    
          // This might cause an exiting rack location to be re-added,
          // but it should be ok.
          for (int i = 0; i < oneblock.racks.length; i++) {
            racks.add(oneblock.racks[i]);
          }
    
          // if the accumulated split size exceeds the maximum, then 
          // create this split.
          // 如果剩余数据块大小大于或等于maxSize,则将这些数据块构成一个切片
          if (maxSize != 0 && curSplitSize >= maxSize) {
            // create an input split and add it to the splits array
            addCreatedSplit(splits, getHosts(racks), validBlocks);
            curSplitSize = 0;
            validBlocks.clear();
            racks.clear();
          }
        }
    
        //剩余数据块形成一个切片
        if (!validBlocks.isEmpty()) {
          addCreatedSplit(splits, getHosts(racks), validBlocks);
        }
      }
  • 相关阅读:
    HTML5 Shiv – 让该死的IE系列支持HTML5吧(转)
    sql之left join、right join、inner join的区别
    一道JS的简单算法题
    逆波兰式计算字符串公式
    前端编程,语义化
    罗列各种排序Mark
    关于JS动画和CSS3动画的性能差异
    各种算法题MARK
    Html笔记【不定时更新】
    CSS3笔记【不定时更新】
  • 原文地址:https://www.cnblogs.com/skyl/p/4754999.html
Copyright © 2011-2022 走看看