zoukankan      html  css  js  c++  java
  • POJ

    RMQ (Range Minimum/Maximum Query)问题是指:对于长度为n的数列A,回答若干询问RMQ(A,i,j)(i,j<=n),返回数列A中下标在i,j里的最小(大)值,也就是说。RMQ问题是指求区间最值的问题。

    Time Limit: 5000MS   Memory Limit: 65536KB   64bit IO Format: %I64d & %I64u

     Status

    Description

    For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the same order. One day Farmer John decides to organize a game of Ultimate Frisbee with some of the cows. To keep things simple, he will take a contiguous range of cows from the milking lineup to play the game. However, for all the cows to have fun they should not differ too much in height.

    Farmer John has made a list of Q (1 ≤ Q ≤ 200,000) potential groups of cows and their heights (1 ≤ height ≤ 1,000,000). For each group, he wants your help to determine the difference in height between the shortest and the tallest cow in the group.

    Input

    Line 1: Two space-separated integers, N and Q
    Lines 2.. N+1: Line i+1 contains a single integer that is the height of cow i
    Lines N+2.. NQ+1: Two integers A and B (1 ≤ A ≤ B ≤ N), representing the range of cows from A to B inclusive.

    Output

    Lines 1.. Q: Each line contains a single integer that is a response to a reply and indicates the difference in height between the tallest and shortest cow in the range.

    Sample Input

    6 3
    1
    7
    3
    4
    2
    5
    1 5
    4 6
    2 2

    Sample Output

    6
    3
    0

    1.朴素(遍历): 复杂度O(n)-O(qn)。

    2.线段树 :复杂度O(n)-O(qlogn)。

    3.ST(Sparse Table)算法 :O(nlogn)-O(q)

    说下ST算法,由于每一个查询仅仅有O(1)。在处理大量查询的时候有优势。

    <1>.预处理(动态规划DP)

    对A[i]数列,F[i][j] 表示从第i个数起连续2^j 中的最大值(DP的状态),能够看到,F[i][0] 表示的是A[i](DP的初始值)。

    最后。状态转移方程是

    F[i][j]=max(F[i][j-1],F[i+2^(j-1)][j-1])

    <2>查询

    若查询区间为(a。b),区间长度为b-a+1,取k=log2(b-a+1),则Max(a。b)=max(F[a][k]。F[b-2^k+1][k])。

    1.ST算法

    #include<iostream>
    #include<algorithm>
    #include<cstdio>
    #include<cstring>
    #include<cmath>
    #define max(a,b) (a>b?a:b)  
    #define min(a,b) (a<b?a:b)
    using namespace std;
    
    const int MAXN = 50050;
    
    int mins[MAXN][20];
    int maxs[MAXN][20];
    
    void RMQ(int n)
    {
    	for (int j = 1; (1 << j) <= n;j++)
    	for (int i = 1; i + (1 << j) - 1 <= n; i++)
    	{
    		int p = (1 << (j - 1));
    		mins[i][j] = min(mins[i][j - 1], mins[i + p][j - 1]);
    		maxs[i][j] = max(maxs[i][j - 1], maxs[i + p][j - 1]);
    	}
    }
    
    int queryMin(int l, int r)
    {
    	int k = log((double)(r - l + 1))/log(2.0);
    	return min(mins[l][k], mins[r - (1 << k) + 1][k]);
    }
    
    int queryMax(int l, int r)
    {
    	int k = log((double)(r - l + 1))/log(2.0);
    	return max(maxs[l][k], maxs[r - (1 << k) + 1][k]);
    }
    
    int main()
    {
    	int n, q;
    	scanf("%d%d", &n, &q);
    	int num;
    	for (int i = 1; i <= n; i++)
    	{
    		scanf("%d", &num);
    		maxs[i][0] = mins[i][0] = num;
    	}
    	RMQ(n);
    	int a, b;
    	int ans;
    	for (int i = 0; i < q; i++)
    	{
    		scanf("%d%d", &a, &b);
    		ans= queryMax(a, b) - queryMin(a, b);
    		printf("%d
    ", ans);
    	}
    }

    2.线段树

    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<string>
    #include<algorithm>
    #define max(a,b) (a>b?a:b)
    #define min(a,b) (a<b?a:b)
    
    using namespace std;
    
    const int MAXN = 50050;
    
    int num[MAXN];
    
    struct node
    {
    	int r;
    	int l;
    	int Max;
    	int Min;
    }tree[3*MAXN];
    
    void build(int l, int r, int i)
    {
    	tree[i].l = l; tree[i].r = r;
    	if (l == r)
    	{
    		tree[i].Max = tree[i].Min = num[l];
    		return;
    	}
    	int m = (l + r) >> 1, ls = i << 1, rs = ls + 1;
    	build(l, m, ls);
    	build(m + 1, r, rs);
    	tree[i].Max = max(tree[rs].Max, tree[ls].Max);
    	tree[i].Min = min(tree[rs].Min, tree[ls].Min);
    }
    
    int queryMax(int l, int r, int i)
    {
    	if (tree[i].l == l&&tree[i].r == r)
    		return tree[i].Max;
    	int m = (tree[i].l + tree[i].r) >> 1, ls = i << 1, rs = ls + 1;
    	if (r <= m) return queryMax(l, r, ls);
    	else if (l > m) return queryMax(l, r, rs);
    	else return max(queryMax(l, m, ls), queryMax(m + 1, r, rs));
    }
    
    int queryMin(int l, int r, int i)
    {
    	if (tree[i].l == l&&tree[i].r == r)
    		return tree[i].Min;
    	int m = (tree[i].l + tree[i].r) >> 1, ls = i << 1, rs = ls + 1;
    	if (r <= m) return queryMin(l, r, ls);
    	else if (l > m) return queryMin(l, r, rs);
    	else return min(queryMin(l, m, ls), queryMin(m + 1, r, rs));
    }
    
    int  main()
    {
    	int n, q;
    	scanf("%d%d", &n, &q);
    	for (int i = 1; i <= n; i++)
    		scanf("%d", &num[i]);
    	build(1, n, 1);
    	int a, b;
    	int ans;
    	for (int i = 0; i < q; i++)
    	{
    		scanf("%d%d", &a, &b);
    		ans = queryMax(a, b, 1) - queryMin(a, b, 1);
    		printf("%d
    ", ans);
    	}
    }

    參考了http://blog.csdn.net/niushuai666/article/details/6624672/


  • 相关阅读:
    11.ForkJoinPool 分支/合并框架 (工作窃取)
    10.线程池_线程调度
    9.线程八锁
    8.读写锁ReadWriteLock
    7.生产者消费者 案例 (使用Lock 同步锁 方式,使用Condition完成线程之间的通信)
    ScrollView嵌套子View的getDrawingCache为空的解决方法
    装箱与拆箱
    Java核心技术卷一基础知识-第11章-异常、断言、日志和调试-读书笔记
    Java核心技术卷一基础知识-第9章-Swing用户界面组件-读书笔记
    Java核心技术卷一基础知识-第8章-事件处理-读书笔记
  • 原文地址:https://www.cnblogs.com/slgkaifa/p/6758399.html
Copyright © 2011-2022 走看看