zoukankan      html  css  js  c++  java
  • 高可用Hadoop平台-运行MapReduce程序

    1.概述

      最近有同学反应,如何在配置了HA的Hadoop平台运行MapReduce程序呢?对于刚步入Hadoop行业的同学,这个疑问却是会存在,其实仔细想想,如果你之前的语言功底不错的,应该会想到自动重连,自动重连也可以帮我我们解决运行MapReduce程序的问题。然后,今天我赘述的是利用Hadoop的Java API 来实现。

    2.介绍

      下面直接附上代码,代码中我都有注释。

    2.1Java操作HDFS HA的API

      代码如下:

    /**
     * 
     */
    package cn.hdfs.mr.example;
    
    import java.io.IOException;
    
    import org.apache.hadoop.conf.Configuration;
    import org.apache.hadoop.fs.FileStatus;
    import org.apache.hadoop.fs.FileSystem;
    import org.apache.hadoop.fs.Path;
    
    /**
     * @author dengjie
     * @date 2015年3月24日
     * @description TODO
     */
    public class DFS {
    
        public static void main(String[] args) {
        Configuration conf = new Configuration();
        conf.set("fs.defaultFS", "hdfs://cluster1");//指定hdfs的nameservice为cluster1,是NameNode的URI
        conf.set("dfs.nameservices", "cluster1");//指定hdfs的nameservice为cluster1
        conf.set("dfs.ha.namenodes.cluster1", "nna,nns");//cluster1下面有两个NameNode,分别是nna,nns
        conf.set("dfs.namenode.rpc-address.cluster1.nna", "10.211.55.26:9000");//nna的RPC通信地址
        conf.set("dfs.namenode.rpc-address.cluster1.nns", "10.211.55.27:9000");//nns的RPC通信地址
        conf.set("dfs.client.failover.proxy.provider.cluster1", "org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider");//配置失败自动切换实现方式
        FileSystem fs = null;
        try {
            fs = FileSystem.get(conf);//获取文件对象
            FileStatus[] list = fs.listStatus(new Path("/"));//文件状态集合
            for (FileStatus file : list) {
            System.out.println(file.getPath().getName());//打印目录名
            }
        } catch (IOException e) {
            e.printStackTrace();
        } finally {
            try {
            if (fs != null) {
                fs.close();
            }
            } catch (IOException e) {
            e.printStackTrace();
            }
        }
        }
    
    }

      接下来,附上 Java 运行 MapReduce 程序的 API 代码。

    2.2Java 运行 MapReduce 程序的 API 

      以 WordCount 为例子,代码如下:

    package cn.jpush.hdfs.mr.example;
    
    import java.io.IOException;
    import java.util.Random;
    import java.util.StringTokenizer;
    
    import org.apache.hadoop.conf.Configuration;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.io.IntWritable;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapreduce.Job;
    import org.apache.hadoop.mapreduce.Mapper;
    import org.apache.hadoop.mapreduce.Reducer;
    import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
    import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
    import org.slf4j.Logger;
    import org.slf4j.LoggerFactory;
    
    import cn.jpush.hdfs.utils.ConfigUtils;
    
    /**
     * 
     * @author dengjie
     * @date 2014年11月29日
     * @description Wordcount的例子是一个比较经典的mapreduce例子,可以叫做Hadoop版的hello world。
     *              它将文件中的单词分割取出,然后shuffle,sort(map过程),接着进入到汇总统计
     *              (reduce过程),最后写道hdfs中。基本流程就是这样。
     */
    public class WordCount {
    
        private static Logger log = LoggerFactory.getLogger(WordCount.class);
    
        public static class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable> {
    
        private final static IntWritable one = new IntWritable(1);
        private Text word = new Text();
    
        /*
         * 源文件:a b b
         * 
         * map之后:
         * 
         * a 1
         * 
         * b 1
         * 
         * b 1
         */
        public void map(Object key, Text value, Context context) throws IOException, InterruptedException {
            StringTokenizer itr = new StringTokenizer(value.toString());// 整行读取
            while (itr.hasMoreTokens()) {
            word.set(itr.nextToken());// 按空格分割单词
            context.write(word, one);// 每次统计出来的单词+1
            }
        }
        }
    
        /*
         * reduce之前:
         * 
         * a 1
         * 
         * b 1
         * 
         * b 1
         * 
         * reduce之后:
         * 
         * a 1
         * 
         * b 2
         */
        public static class IntSumReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
        private IntWritable result = new IntWritable();
    
        public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
            int sum = 0;
            for (IntWritable val : values) {
            sum += val.get();
            }
            result.set(sum);
            context.write(key, result);
        }
        }
    
        @SuppressWarnings("deprecation")
        public static void main(String[] args) throws Exception {
        Configuration conf = new Configuration();
        conf.set("fs.defaultFS", "hdfs://cluster1");
        conf.set("dfs.nameservices", "cluster1");
        conf.set("dfs.ha.namenodes.cluster1", "nna,nns");
        conf.set("dfs.namenode.rpc-address.cluster1.nna", "10.211.55.26:9000");
        conf.set("dfs.namenode.rpc-address.cluster1.nns", "10.211.55.27:9000");
        conf.set("dfs.client.failover.proxy.provider.cluster1", "org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider");
        long random1 = new Random().nextLong();// 重定下输出目录
        log.info("random1 -> " + random1);
        
        Job job1 = new Job(conf, "word count");
        job1.setJarByClass(WordCount.class);
        job1.setMapperClass(TokenizerMapper.class);// 指定Map计算的类
        job1.setCombinerClass(IntSumReducer.class);// 合并的类
        job1.setReducerClass(IntSumReducer.class);// Reduce的类
        job1.setOutputKeyClass(Text.class);// 输出Key类型
        job1.setOutputValueClass(IntWritable.class);// 输出值类型  
        
        FileInputFormat.addInputPath(job1, new Path("/home/hdfs/test/hello.txt"));// 指定输入路径
        FileOutputFormat.setOutputPath(job1, new Path(String.format(ConfigUtils.HDFS.WORDCOUNT_OUT, random1)));// 指定输出路径
    
        System.exit(job1.waitForCompletion(true) ? 0 : 1);// 执行完MR任务后退出应用
        }
    }

    3.运行结果

      下面附上部分运行 Log 日志,如下所示:

    [Job.main] - Running job: job_local551164419_0001
    2015-03-24 11:52:09 INFO  [LocalJobRunner.Thread-12] - OutputCommitter set in config null
    2015-03-24 11:52:09 INFO  [LocalJobRunner.Thread-12] - OutputCommitter is org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter
    2015-03-24 11:52:10 INFO  [LocalJobRunner.Thread-12] - Waiting for map tasks
    2015-03-24 11:52:10 INFO  [LocalJobRunner.LocalJobRunner Map Task Executor #0] - Starting task: attempt_local551164419_0001_m_000000_0
    2015-03-24 11:52:10 INFO  [ProcfsBasedProcessTree.LocalJobRunner Map Task Executor #0] - ProcfsBasedProcessTree currently is supported only on Linux.
    2015-03-24 11:52:10 INFO  [Task.LocalJobRunner Map Task Executor #0] -  Using ResourceCalculatorProcessTree : null
    2015-03-24 11:52:10 INFO  [MapTask.LocalJobRunner Map Task Executor #0] - Processing split: hdfs://cluster1/home/hdfs/test/hello.txt:0+24
    2015-03-24 11:52:10 INFO  [MapTask.LocalJobRunner Map Task Executor #0] - Map output collector class = org.apache.hadoop.mapred.MapTask$MapOutputBuffer
    2015-03-24 11:52:10 INFO  [MapTask.LocalJobRunner Map Task Executor #0] - (EQUATOR) 0 kvi 26214396(104857584)
    2015-03-24 11:52:10 INFO  [MapTask.LocalJobRunner Map Task Executor #0] - mapreduce.task.io.sort.mb: 100
    2015-03-24 11:52:10 INFO  [MapTask.LocalJobRunner Map Task Executor #0] - soft limit at 83886080
    2015-03-24 11:52:10 INFO  [MapTask.LocalJobRunner Map Task Executor #0] - bufstart = 0; bufvoid = 104857600
    2015-03-24 11:52:10 INFO  [MapTask.LocalJobRunner Map Task Executor #0] - kvstart = 26214396; length = 6553600
    2015-03-24 11:52:10 INFO  [LocalJobRunner.LocalJobRunner Map Task Executor #0] - 
    2015-03-24 11:52:10 INFO  [MapTask.LocalJobRunner Map Task Executor #0] - Starting flush of map output
    2015-03-24 11:52:10 INFO  [MapTask.LocalJobRunner Map Task Executor #0] - Spilling map output
    2015-03-24 11:52:10 INFO  [MapTask.LocalJobRunner Map Task Executor #0] - bufstart = 0; bufend = 72; bufvoid = 104857600
    2015-03-24 11:52:10 INFO  [MapTask.LocalJobRunner Map Task Executor #0] - kvstart = 26214396(104857584); kvend = 26214352(104857408); length = 45/6553600
    2015-03-24 11:52:10 INFO  [MapTask.LocalJobRunner Map Task Executor #0] - Finished spill 0
    2015-03-24 11:52:10 INFO  [Task.LocalJobRunner Map Task Executor #0] - Task:attempt_local551164419_0001_m_000000_0 is done. And is in the process of committing
    2015-03-24 11:52:10 INFO  [LocalJobRunner.LocalJobRunner Map Task Executor #0] - map
    2015-03-24 11:52:10 INFO  [Task.LocalJobRunner Map Task Executor #0] - Task 'attempt_local551164419_0001_m_000000_0' done.
    2015-03-24 11:52:10 INFO  [LocalJobRunner.LocalJobRunner Map Task Executor #0] - Finishing task: attempt_local551164419_0001_m_000000_0
    2015-03-24 11:52:10 INFO  [LocalJobRunner.Thread-12] - map task executor complete.
    2015-03-24 11:52:10 INFO  [LocalJobRunner.Thread-12] - Waiting for reduce tasks
    2015-03-24 11:52:10 INFO  [LocalJobRunner.pool-6-thread-1] - Starting task: attempt_local551164419_0001_r_000000_0
    2015-03-24 11:52:10 INFO  [ProcfsBasedProcessTree.pool-6-thread-1] - ProcfsBasedProcessTree currently is supported only on Linux.
    2015-03-24 11:52:10 INFO  [Task.pool-6-thread-1] -  Using ResourceCalculatorProcessTree : null
    2015-03-24 11:52:10 INFO  [ReduceTask.pool-6-thread-1] - Using ShuffleConsumerPlugin: org.apache.hadoop.mapreduce.task.reduce.Shuffle@1197414
    2015-03-24 11:52:10 INFO  [MergeManagerImpl.pool-6-thread-1] - MergerManager: memoryLimit=1503238528, maxSingleShuffleLimit=375809632, mergeThreshold=992137472, ioSortFactor=10, memToMemMergeOutputsThreshold=10
    2015-03-24 11:52:10 INFO  [EventFetcher.EventFetcher for fetching Map Completion Events] - attempt_local551164419_0001_r_000000_0 Thread started: EventFetcher for fetching Map Completion Events
    2015-03-24 11:52:10 INFO  [LocalFetcher.localfetcher#1] - localfetcher#1 about to shuffle output of map attempt_local551164419_0001_m_000000_0 decomp: 50 len: 54 to MEMORY
    2015-03-24 11:52:10 INFO  [InMemoryMapOutput.localfetcher#1] - Read 50 bytes from map-output for attempt_local551164419_0001_m_000000_0
    2015-03-24 11:52:10 INFO  [MergeManagerImpl.localfetcher#1] - closeInMemoryFile -> map-output of size: 50, inMemoryMapOutputs.size() -> 1, commitMemory -> 0, usedMemory ->50
    2015-03-24 11:52:10 INFO  [EventFetcher.EventFetcher for fetching Map Completion Events] - EventFetcher is interrupted.. Returning
    2015-03-24 11:52:10 INFO  [LocalJobRunner.pool-6-thread-1] - 1 / 1 copied.
    2015-03-24 11:52:10 INFO  [MergeManagerImpl.pool-6-thread-1] - finalMerge called with 1 in-memory map-outputs and 0 on-disk map-outputs
    2015-03-24 11:52:10 INFO  [Merger.pool-6-thread-1] - Merging 1 sorted segments
    2015-03-24 11:52:10 INFO  [Merger.pool-6-thread-1] - Down to the last merge-pass, with 1 segments left of total size: 46 bytes
    2015-03-24 11:52:10 INFO  [MergeManagerImpl.pool-6-thread-1] - Merged 1 segments, 50 bytes to disk to satisfy reduce memory limit
    2015-03-24 11:52:10 INFO  [MergeManagerImpl.pool-6-thread-1] - Merging 1 files, 54 bytes from disk
    2015-03-24 11:52:10 INFO  [MergeManagerImpl.pool-6-thread-1] - Merging 0 segments, 0 bytes from memory into reduce
    2015-03-24 11:52:10 INFO  [Merger.pool-6-thread-1] - Merging 1 sorted segments
    2015-03-24 11:52:10 INFO  [Merger.pool-6-thread-1] - Down to the last merge-pass, with 1 segments left of total size: 46 bytes
    2015-03-24 11:52:10 INFO  [LocalJobRunner.pool-6-thread-1] - 1 / 1 copied.
    2015-03-24 11:52:10 INFO  [deprecation.pool-6-thread-1] - mapred.skip.on is deprecated. Instead, use mapreduce.job.skiprecords
    2015-03-24 11:52:10 INFO  [Task.pool-6-thread-1] - Task:attempt_local551164419_0001_r_000000_0 is done. And is in the process of committing
    2015-03-24 11:52:10 INFO  [LocalJobRunner.pool-6-thread-1] - 1 / 1 copied.
    2015-03-24 11:52:10 INFO  [Task.pool-6-thread-1] - Task attempt_local551164419_0001_r_000000_0 is allowed to commit now
    2015-03-24 11:52:10 INFO  [FileOutputCommitter.pool-6-thread-1] - Saved output of task 'attempt_local551164419_0001_r_000000_0' to hdfs://cluster1/output/result/-3636988299559297154/_temporary/0/task_local551164419_0001_r_000000
    2015-03-24 11:52:10 INFO  [LocalJobRunner.pool-6-thread-1] - reduce > reduce
    2015-03-24 11:52:10 INFO  [Task.pool-6-thread-1] - Task 'attempt_local551164419_0001_r_000000_0' done.
    2015-03-24 11:52:10 INFO  [LocalJobRunner.pool-6-thread-1] - Finishing task: attempt_local551164419_0001_r_000000_0
    2015-03-24 11:52:10 INFO  [LocalJobRunner.Thread-12] - reduce task executor complete.
    2015-03-24 11:52:10 INFO  [Job.main] - Job job_local551164419_0001 running in uber mode : false
    2015-03-24 11:52:10 INFO  [Job.main] -  map 100% reduce 100%
    2015-03-24 11:52:10 INFO  [Job.main] - Job job_local551164419_0001 completed successfully
    2015-03-24 11:52:10 INFO  [Job.main] - Counters: 35
        File System Counters
            FILE: Number of bytes read=462
            FILE: Number of bytes written=466172
            FILE: Number of read operations=0
            FILE: Number of large read operations=0
            FILE: Number of write operations=0
            HDFS: Number of bytes read=48
            HDFS: Number of bytes written=24
            HDFS: Number of read operations=13
            HDFS: Number of large read operations=0
            HDFS: Number of write operations=4
        Map-Reduce Framework
            Map input records=2
            Map output records=12
            Map output bytes=72
            Map output materialized bytes=54
            Input split bytes=105
            Combine input records=12
            Combine output records=6
            Reduce input groups=6
            Reduce shuffle bytes=54
            Reduce input records=6
            Reduce output records=6
            Spilled Records=12
            Shuffled Maps =1
            Failed Shuffles=0
            Merged Map outputs=1
            GC time elapsed (ms)=13
            Total committed heap usage (bytes)=514850816
        Shuffle Errors
            BAD_ID=0
            CONNECTION=0
            IO_ERROR=0
            WRONG_LENGTH=0
            WRONG_MAP=0
            WRONG_REDUCE=0
        File Input Format Counters 
            Bytes Read=24
        File Output Format Counters 
            Bytes Written=24

      原文件如下所示:

    a a c v d d
    a d d s s x

      Reduce 结果图,如下所示:

    4.总结

      我们可以按以下步骤进行验证代码的可用性:

    1. 保证 NNA( active 状态)和 NNS( standby 状态)。注意,DN 节点都是正常运行的。
    2. 然后,我们运行 WordCount 程序,看能否统计出结果。
    3. 若安上述步骤下来,可以统计;我们接着往下执行。若不行,请排查错误,然后继续。
    4. 然后,我们 kill 掉 NNA 节点的 NameNode 进程,此时,NNS 的状态会由 standby 转变为 active
    5. 接着我们在支持 WordCount 程序,看能否统计结果;若是能统计结果,表示代码可用。

      以上就是整个验证的流程。

    5.结束语

      这篇文章就分享到这里,如果在验证的过程当中有什么问题,可以加群进行讨论或发送邮件给我,我会尽我所能为您解答,与君共勉!

  • 相关阅读:
    python16_day03【集合、编码、函数、递归、内置函数】
    python16_day02【列表、字典】
    django 自定义用户表替换系统默认表
    用国内镜像源pip加速安装模块
    python虚拟环境的搭建命令mkvirtualenv
    测试分类
    bug理论
    测试用例的优先级
    测试流程
    测试理论
  • 原文地址:https://www.cnblogs.com/smartloli/p/4362688.html
Copyright © 2011-2022 走看看