zoukankan      html  css  js  c++  java
  • HBase存储剖析与数据迁移

    1.概述

      HBase的存储结构和关系型数据库不一样,HBase面向半结构化数据进行存储。所以,对于结构化的SQL语言查询,HBase自身并没有接口支持。在大数据应用中,虽然也有SQL查询引擎可以查询HBase,比如Phoenix、Drill这类。但是阅读这类SQL查询引擎的底层实现,依然是调用了HBase的Java API来实现查询,写入等操作。这类查询引擎在业务层创建Schema来映射HBase表结构,然后通过解析SQL语法数,最后底层在调用HBase的Java API实现。

      本篇内容,笔者并不是给大家来介绍HBase的SQL引擎,我们来关注HBase更低层的东西,那就是HBase的存储实现。以及跨集群的HBase集群数据迁移。

    2.内容

      HBase数据库是唯一索引就是RowKey,所有的数据分布和查询均依赖RowKey。所以,HBase数据库在表的设计上会有很严格的要求,从存储架构上来看,HBase是基于分布式来实现的,通过Zookeeper集群来管理HBase元数据信息,比如表名就存放在Zookeeper的/hbase/table目录下。如下图所示:

    2.1 Architecture

      HBase是一个分布式存储系统,底层数据存储依赖Hadoop的分布式存储系统(HDFS)。HBase架构分三部分来组成,它们分别是:ZooKeeper、HMaster和HRegionServer。

    • ZooKeeper:HBase的元数据信息、HMaster进程的地址、Master和RegionServer的监控维护(节点之间的心跳,判断节点是否下线)等内容均需要依赖ZooKeeper来完成。是HBase集群中不可缺少的核心之一。
    • HMaster:HMaster进程在HBase中承担Master的责任,负责一些管理操作,比如给表分配Region、和数据节点的心跳维持等。一般客户端的读写数据的请求操作不会经过Master,所以在分配JVM内存的适合,一般32GB大小即可。
    • HRegionServer:HRegionServer进程在HBase中承担RegionServer的责任,负责数据的存储。每个RegionServer由多个Region组成,一个Region维护一定区间的RowKey的数据。如下图所示:

      图中Region(dn2:16030)维护的RowKey范围为0001~0002。HBase集群的存储结构如下图所示:

      Zookeeper通常由奇数个组成,便于分布式选举,可参考《分布式系统选举算法剖析》一文了解,这里不多赘述细节。HBase为了保证高可用性(HA),一般都会部署两个Master节点,其中一个作为主,另一个作为Backup节点。这里谁是主,谁是Backup取决于那个HMaster进程能从Zookeeper上对应的Master目录中竞争到Lock,持有该目录Lock的HMaster进程为主Master,而另外一个为Backup,当主Master发生意外或者宕机时,Backup的Master会立刻竞争到Master目录下的Lock从而接管服务,成为主Master对外提供服务,保证HBase集群的高可用性。

    2.2 RegionServer

      HBase负责数据存储的就是RegionServer,简称RS。在HBase集群中,如果只有一份副本时,整个HBase集群中的数据都是唯一的,没有冗余的数据存在,也就是说HBase集群中的每个RegionServer节点上保存的数据都是不一样的,这种模式由于副本数只有一份,即是配置多个RegionServer组成集群,也并不是高可用的。这样的RegionServer是存在单点问题的。虽然,HBase集群内部数据有Region存储和Region迁移机制,RegionServer服务的单点问题可能花费很小的代价可以恢复,但是一旦停止RegionServre上含有ROOT或者META表的Region,那这个问题就严重,由于数据节点RegionServer停止,该节点的数据将在短期内无法访问,需要等待该节点的HRegionServer进程重新启动才能访问其数据。这样HBase的数据读写请求如果恰好指向该节点将会收到影响,比如:抛出连接异常、RegionServer不可用等异常。

    3.日志信息

      HBase在实现WAL方式时会产生日志信息,即HLog。每一个RegionServer节点上都有一个HLog,所有该RegionServer节点上的Region写入数据均会被记录到该HLog中。HLog的主要职责就是当遇到RegionServer异常时,能够尽量的恢复数据。

      在HBase运行的过程当中,HLog的容量会随着数据的写入越来越大,HBase会通过HLog过期策略来进行定期清理HLog,每个RegionServer内部均有一个HLog的监控线程。HLog数据从MemStore Flush到底层存储(HDFS)上后,说明该时间段的HLog已经不需要了,就会被移到“oldlogs”这个目录中,HLog监控线程监控该目录下的HLog,当该文件夹中的HLog达到“hbase.master.logcleaner.ttl”(单位是毫秒)属性所配置的阀值后,监控线程会立即删除过期的HLog数据。

    4.数据存储

      HBase通过MemStore来缓存Region数据,大小可以通过“hbase.hregion.memstore.flush.size”(单位byte)属性来进行设置。RegionServer在写完HLog后,数据会接着写入到Region的MemStore。由于MemStore的存在,HBase的数据写入并非是同步的,不需要立刻响应客户端。由于是异步操作,具有高性能和高资源利用率等优秀的特性。数据在写入到MemStore中的数据后都是预先按照RowKey的值来进行排序的,这样便于查询的时候查找数据。

    5.Region分割

      在HBase存储中,通过把数据分配到一定数量的Region来达到负载均衡。一个HBase表会被分配到一个或者多个Region,这些Region会被分配到一个或者多个RegionServer中。在自动分割策略中,当一个Region中的数据量达到阀值就会被自动分割成两个Region。HBase的表中的Region按照RowKey来进行排序,并且一个RowKey所对应的Region只有一个,保证了HBase的一致性。

      一个Region中由一个或者多个Store组成,每个Store对应一个列族。一个Store中包含一个MemStore和多个Store Files,每个列族是分开存放以及分开访问的。自动分割有三种策略,分别是:

    • ConstantSizeRegionSplitPolicy:在HBase-0.94版本之前是默认和唯一的分割策略。当某一个Store的大小超过阀值时(hbase.hregion.max.filesize,默认时10G),Region会自动分割。
    • IncreasingToUpperBoundRegionSplitPolicy:在HBase-0.94中,这个策略分割大小和表的RegionServer中的Region有关系。分割计算公式为:Min(R*R*'hbase.hregion.memstore.flush.size','hbase.hregion.max.filesize'),其中,R表示RegionServer中的Region数。比如:hbase.hregion.memstore.flush.size=256MB,hbase.hregion.max.filesize=20GB,那么第一次分割的大小为Min(1*1*256,20GB)=256MB,也就是在第一次大到256MB会分割成2个Region,后续以此公式类推计算。
    • KeyPrefixRegionSplitPolicy:可以保证相同前缀的RowKey存放在同一个Region中,可以通过hbase.regionserver.region.split.policy属性来指定分割策略。

    6.磁盘合理规划

      部署HBase集群时,磁盘和内存的规划是有计算公式的。随意分配可能造成集群资源利用率不高导致存在浪费的情况。公式如下:

    # 通过磁盘维度的Region数和Java Heap维度的Region数来推导 
    Disk Size/(RegionSize*ReplicationFactor)=Java Heap*HeapFractionForMemstore/(MemstoreSize/2)

      公式中对应的hbase-site.xml文件中的属性中,见下表:

    Key Property
    Disk Size 磁盘容量大小,一般一台服务器有多块磁盘
    RegionSize hbase.hregion.max.filesize默认10G,推荐范围在10GB~30GB
    ReplicationFactor dfs.replication默认为3
    Java Heap 分配给HBase JVM的内存大小
    HeapFractionForMemstore hbase.regionserver.global.memstore.lowerLimit默认为0.4
    MemstoreSize hbase.hregion.memstore.flush.size默认为128M

      在实际使用中,MemstoreSize空间打下只使用了一半(1/2)的容量。 举个例子,一个RegionServer的副本数配置为3,RegionSize为10G,HBase的JVM内存分配45G,HBase的MemstoreSize为128M,那此时根据公式计算得出理想的磁盘容量为45G*1024*0.4*2*10G*1024*3/128M=8.5T左右磁盘空间。如果此时,分配一个节点中挂载10个可用盘,共27T。那将有两倍的磁盘空间不匹配造成浪费。 为了提升磁盘匹配度,可以将RegionSize值提升至30G,磁盘空间计算得出25.5T,基本和27T磁盘容量匹配。

    7.数据迁移

      对HBase集群做跨集群数据迁移时,可以使用Distcp方案来进行迁移。该方案需要依赖MapReduce任务来完成,所以在执行迁移命令之前确保新集群的ResourceManager、NodeManager进程已启动。同时,为了查看迁移进度,推荐开启proxyserver进程和historyserver进程,开启这2个进程可以方便在ResourceManager业务查看MapReduce任务进行的进度。 迁移的步骤并不复杂,在新集群中执行distcp命令即可。具体操作命令如下所示:

    # 在新集群的NameNode节点执行命令
    [hadoop@nna ~]$ hadoop distcp -Dmapreduce.job.queue.name=queue_0001_01 -update -skipcrccheck -m 100 hdfs://old_hbase:9000/hbase/data/tabname /hbase/data/tabname

      为了迁移方便,可以将上述命令封装成一个Shell脚本。具体实现如下所示:

    #! /bin/bash
    for i in `cat /home/hadoop/hbase/tbl`
    do
    echo $i
    hadoop distcp -Dmapreduce.job.queue.name=queue_0001_01 -update -skipcrccheck -m 100 hdfs://old_hbase:9000/hbase/data/$i /hbase/data/$i
    done
    hbase hbck -repairHoles

      将待迁移的表名记录在/home/hadoop/hbase/tbl文件中,一行代表一个表。内容如下所示:

    hadoop@nna ~]$ vi /home/hadoop/hbase/tbl
    
    
    # 表名列表
    tbl1
    tbl2
    tbl3
    tbl4

      最后,在循环迭代迁移完成后,执行HBase命令“hbase hbck -repairHoles”来修复HBase表的元数据,如表名、表结构等内容,会从新注册到新集群的Zookeeper中。

    8.总结

      HBase集群中如果RegionServer上的Region数量很大,可以适当调整“hbase.hregion.max.filesize”属性值的大小,来减少Region分割的次数。在执行HBase跨集群数据迁移时,使用Distcp方案来进行,需要保证HBase集群中的表是静态数据,换言之,需要停止业务表的写入。如果在执行HBase表中数据迁移时,表持续有数据写入,导致迁移异常,抛出某些文件找不到。

    9.结束语

      这篇博客就和大家分享到这里,如果大家在研究学习的过程当中有什么问题,可以加群进行讨论或发送邮件给我,我会尽我所能为您解答,与君共勉。

  • 相关阅读:
    读书笔记——吴军《态度》
    JZYZOJ1237 教授的测试 dfs
    NOI1999 JZYZOJ1289 棋盘分割 dp 方差的数学结论
    [JZYZOJ 1288][洛谷 1005] NOIP2007 矩阵取数 dp 高精度
    POJ 3904 JZYZOJ 1202 Sky Code 莫比乌斯反演 组合数
    POJ2157 Check the difficulty of problems 概率DP
    HDU3853 LOOPS 期望DP 简单
    Codeforces 148D. Bag of mice 概率dp
    POJ3071 Football 概率DP 简单
    HDU4405 Aeroplane chess 飞行棋 期望dp 简单
  • 原文地址:https://www.cnblogs.com/smartloli/p/8016598.html
Copyright © 2011-2022 走看看