zoukankan      html  css  js  c++  java
  • tensorflow.python.framework.errors_impl.InvalidArgumentError: You must feed a value for placeholder tensor 'x_1' with dtype float and shape [?,227,227,3]

    记一次超级蠢超级折磨我的bug。

    报错内容:

    tensorflow.python.framework.errors_impl.InvalidArgumentError: You must feed a value for placeholder tensor 'x_1' with dtype float and shape [?,227,227,3]
    [[Node: x_1 = Placeholder[dtype=DT_FLOAT, shape=[?,227,227,3], _device="/job:localhost/replica:0/task:0/device:GPU:0"]()]]
    [[Node: fc3/_33 = _Recv[client_terminated=false, recv_device="/job:localhost/replica:0/task:0/device:CPU:0", send_device="/job:localhost/replica:0/task:0/device:GPU:0", send_device_incarnation=1, tensor_name="edge_110_fc3", tensor_type=DT_FLOAT, _device="/job:localhost/replica:0/task:0/device:CPU:0"]()]]

    错误理解起来很简单,没有给placeholder ‘x_1’赋值。

    这是我的预测代码:

    image = Image.open(imagefile)
    image = image.resize([227, 227])
    image_array = np.array(image)
    image_array = image_array.astype(float)
    image = np.reshape(image_array, [1, 227, 227, 3])
    saver = tf.train.import_meta_graph("/home/ubuntu/demo/package/5.8_2000op_256batch/AlexNetModel.ckpt.meta")
    graph = tf.get_default_graph()
    prediction = graph.get_tensor_by_name("fc3:0")
    x = graph.get_tensor_by_name("x:0")
    with tf.Session() as sess:
      saver.restore(sess, "/home/ubuntu/demo/package/5.8_2000op_256batch/AlexNetModel.ckpt")
      Predict = sess.run(prediction, feed_dict={x: image})
      max_index = np.argmax(Predict)
      if max_index==0:
        return "cat"
      else:
        return "dog"

    之前是觉得image格式有问题,不能作为输入给x。

    因为最初始,源码是这样写的:

    image = Image.open(imagefile)
    image = image.resize([227, 227])
    image_array = np.array(image)

    image = tf.cast(image_array,tf.float32)
    image = tf.image.per_image_standardization(image)
    image = tf.reshape(image, [1, 227, 227, 3])

    而使用tf的方法,返回值是一个tensor,而tensor是无法赋值给placeholder定义的数据类型。

    • sess.run()第一个参数是要fetch的变量,这个变量的类型只能是tensor或者string, 后面如果要加feed_dict = {}, 注意feed的数据类型可以是Python scalars, strings, lists, numpy ndarrays, or TensorHandles,不能是tensor.fecth得到的变量是<type 'numpy.ndarray'>。一句话就是,在运行图的时,tensor用sess.run()取出来,然后再feed进去。

    所以就把image的形状变化,tf.reshape()改为了np.reshape(),但是还有问题,报错为上面的You must feed a value for placeholder tensor 'x_1' with dtype float and shape [?,227,227,3].......

    完了彻底把我整懵逼了,不知道应该给x什么样的输入了,但是又好奇怪,placeholder tensor 'x_1'那里来的,没有定义过 'x_1'这种东西呀。贴一下训练代码,placeholder的申请。

    x = tf.placeholder(tf.float32, [None, 227, 227, 3],name='x')
    y = tf.placeholder(tf.float32, [None, n_classes])

    感觉没问题啊,挺好的啊。如果代码真的是这样确实没啥问题挺好的,关键是自己脑残,x = tf.placeholder(tf.float32, [None, 227, 227, 3],name='x')申请了两遍

    删掉一个。OK了。很烦,困扰了自己好几天

  • 相关阅读:
    Nexus3.0私服搭建
    JavaScript
    Spring基础
    Hibernate注解
    HTML5
    Apache Tomcat
    Java安装(Ubuntu)
    C++ 日期 & 时间
    C++ 引用
    C++ 指针
  • 原文地址:https://www.cnblogs.com/smartwhite/p/9007323.html
Copyright © 2011-2022 走看看