zoukankan      html  css  js  c++  java
  • 1159 Palindrome

    Palindrome
    Time Limit: 3000MS   Memory Limit: 65536K
    Total Submissions: 68562   Accepted: 23869

    Description

    A palindrome is a symmetrical string, that is, a string read identically from left to right as well as from right to left. You are to write a program which, given a string, determines the minimal number of characters to be inserted into the string in order to obtain a palindrome. 

    As an example, by inserting 2 characters, the string "Ab3bd" can be transformed into a palindrome ("dAb3bAd" or "Adb3bdA"). However, inserting fewer than 2 characters does not produce a palindrome. 

    Input

    Your program is to read from standard input. The first line contains one integer: the length of the input string N, 3 <= N <= 5000. The second line contains one string with length N. The string is formed from uppercase letters from 'A' to 'Z', lowercase letters from 'a' to 'z' and digits from '0' to '9'. Uppercase and lowercase letters are to be considered distinct.

    Output

    Your program is to write to standard output. The first line contains one integer, which is the desired minimal number.

    Sample Input

    5
    Ab3bd

    Sample Output

    2

    用的LIS的做法 参考1458

    字符串s长度为N 将输入的字符串倒过来记做rs 则N - (s与rs的最长公共子序列的长度) 就是答案

    用scanf或者getchar()都是1600MS 不知道0MS的是怎么做的

    #include <stdio.h>
    #include <iostream>
    #include <cstring>
    #include <vector>
    #include <algorithm>
    const int si = 5016;
    using namespace std;
    char s[si], rs[si];
    int dp[2][si];
    int main() {
        int N;
        cin >> N;
        scanf("%s", s);
        for (int i = 0; i < N; i++) rs[N - i - 1] = s[i];
        int e = 0;
        for (int i = 1; i <= N; i++) {
            for (int j = 1; j <= N; j++) {
                dp[e][j] = max(dp[1 - e][j], dp[e][j - 1]);
                if (s[i - 1] == rs[j - 1]) {
                    dp[e][j] = max(dp[e][j], dp[1 - e][j - 1] + 1);
                }
            }
            e = 1 - e;
        }
        cout << N - dp[1 - e][N];
        return 0;
    }
  • 相关阅读:
    正则表达式详解
    js前端性能优化之函数节流和函数防抖
    Vue 给axios做个靠谱的封装(报错,鉴权,跳转,拦截,提示)
    你所误解的微信公众号开发、以及微信公众号网页授权、接收url跳转参数等问题
    JavaScript 复杂判断的更优雅写法
    秒懂 this(带你撸平this)
    Vue.js 3.0 新特性预览
    完美平滑实现一个“回到顶部”
    从插入排序到希尔排序
    LWIP协议中tcp_seg结构相关指针的个人理解
  • 原文地址:https://www.cnblogs.com/smatrchen/p/10585761.html
Copyright © 2011-2022 走看看