zoukankan      html  css  js  c++  java
  • hdu 5773 最长递增子序列 (nlogn)+贪心

    The All-purpose Zero

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
    Total Submission(s): 947    Accepted Submission(s): 453


    Problem Description
    ?? gets an sequence S with n intergers(0 < n <= 100000,0<= S[i] <= 1000000).?? has a magic so that he can change 0 to any interger(He does not need to change all 0 to the same interger).?? wants you to help him to find out the length of the longest increasing (strictly) subsequence he can get.
     
    Input
    The first line contains an interger T,denoting the number of the test cases.(T <= 10)
    For each case,the first line contains an interger n,which is the length of the array s.
    The next line contains n intergers separated by a single space, denote each number in S.
     
    Output
    For each test case, output one line containing “Case #x: y”(without quotes), where x is the test case number(starting from 1) and y is the length of the longest increasing subsequence he can get.
     
    Sample Input
    2 7 2 0 2 1 2 0 5 6 1 2 3 3 0 0
     
    Sample Output
    Case #1: 5 Case #2: 5
    Hint
    In the first case,you can change the second 0 to 3.So the longest increasing subsequence is 0 1 2 3 5.
    题意: 给你n个数字,你可以将其中的0变成任意数字,求最终能得到的最长严格递增子序列,
    #include <cstdio>
    #include <cstring>
    #include <iostream>
    #include <algorithm>
    #include <vector>
    #include <queue>
    #include <set>
    #include <map>
    #include <string>
    #include <cmath>
    #include <stdlib.h>
    using namespace std;
    typedef long long LL;
    const int inf=0x3f3f3f3f;
    const int mod=1e9+7;
    const int N=1e5+10;
    
    int a[N],ans[N];
    int main()
    {
        int cas,n,x,kk=0;
        scanf("%d",&cas);
        while(cas--){
            scanf("%d",&n);
            int cnt=0,num=0;
            for(int i=1;i<=n;i++){
                scanf("%d",&x);
                if(!x) cnt++;
                else a[++num]=x-cnt;
            }
            if(!num) {
                printf("Case #%d: %d
    ",++kk,cnt);
                continue;
            }
            int len=1;
            ans[1]=a[1];
            for(int i=2;i<=num;i++){
                if(a[i]>ans[len]) ans[++len]=a[i];
                else {
                  int pos=lower_bound(ans+1,ans+len,a[i])-ans;
                  ans[pos]=a[i];
                }
            }
            printf("Case #%d: %d
    ",++kk,len+cnt);
        }
        return 0;
    }
    

      0可以转化成任意整数,包括负数,显然求LIS时尽量把0都放进去必定是正确的。因此我们可以把0拿出来,对剩下的做O(nlogn)的LIS,统计结果的时候再算上0的数量。为了保证严格递增,我们可以将每个权值S[i]减去i前面0的个数,再做LIS,就能保证结果是严格递增的。

  • 相关阅读:
    EasyUI datagrid动态生成列
    EasyUI easyui-combobox实现数据联动
    EasyUI中datagrid的基本用法
    Oracle update 执行更新操作后的数据恢复
    SqlHelper类
    oracle drop table(表)数据恢复方法
    C#微信公众号——本地调试
    git ignore 总结
    maya cmds pymel 选择 uv area(uv 面积) 为0 的面
    maya cmds pymel selectType() 选择类型切换
  • 原文地址:https://www.cnblogs.com/smilesundream/p/5718876.html
Copyright © 2011-2022 走看看