zoukankan      html  css  js  c++  java
  • Keras预测股票

    #!/usr/bin/env python3
    # -*- coding: utf-8 -*-
    """
    Created on Sat Nov 18 21:22:29 2017
    
    @author: luogan
    """
    
    from matplotlib.dates import DateFormatter, WeekdayLocator, DayLocator, MONDAY,YEARLY
    from matplotlib.finance import quotes_historical_yahoo_ohlc, candlestick_ohlc
    #import matplotlib
    import tushare as ts
    import pandas as pd
    import matplotlib.pyplot as plt
    from matplotlib.pylab import date2num
    import datetime
    import numpy as np
    from pandas import DataFrame
    from numpy import row_stack,column_stack
    
    df=ts.get_hist_data('601857',start='2016-06-15',end='2017-11-06')
    dd=df[['open','high','low','close']]
    
    #print(dd.values.shape[0])
    
    dd1=dd .sort_index()
    
    dd2=dd1.values.flatten()
    
    g1=dd2[::-1]
    
    g2=g1[0:120]
    
    g3=g2[::-1]
    
    gg=DataFrame(g3)
    
    gg.T.to_excel('gg.xls') 
    
    
    
    #dd3=pd.DataFrame(dd2)
    #dd3.T.to_excel('d8.xls') 
    
    g=dd2[0:140]
    for i in range(dd.values.shape[0]-34):
    
        s=dd2[i*4:i*4+140]
        g=row_stack((g,s))
    
    fg=DataFrame(g)
    
    print(fg)    
    fg.to_excel('fg.xls') 
    
    
    #-*- coding: utf-8 -*-
    #建立、训练多层神经网络,并完成模型的检验
    #from __future__ import print_function
    import pandas as pd
    
    
    inputfile1='fg.xls' #训练数据
    testoutputfile = 'test_output_data.xls' #测试数据模型输出文件
    data_train = pd.read_excel(inputfile1) #读入训练数据(由日志标记事件是否为洗浴)
    data_mean = data_train.mean()
    data_std = data_train.std()
    data_train1 = (data_train-data_mean)/5  #数据标准化
    
    y_train = data_train1.iloc[:,120:140].as_matrix() #训练样本标签列
    x_train = data_train1.iloc[:,0:120].as_matrix() #训练样本特征
    #y_test = data_test.iloc[:,4].as_matrix() #测试样本标签列
    
    from keras.models import Sequential
    from keras.layers.core import Dense, Dropout, Activation
    
    model = Sequential() #建立模型
    model.add(Dense(input_dim = 120, output_dim = 240)) #添加输入层、隐藏层的连接
    model.add(Activation('relu')) #以Relu函数为激活函数
    model.add(Dense(input_dim = 240, output_dim = 120)) #添加隐藏层、隐藏层的连接
    model.add(Activation('relu')) #以Relu函数为激活函数
    model.add(Dense(input_dim = 120, output_dim = 120)) #添加隐藏层、隐藏层的连接
    model.add(Activation('relu')) #以Relu函数为激活函数
    model.add(Dense(input_dim = 120, output_dim = 20)) #添加隐藏层、输出层的连接
    model.add(Activation('sigmoid')) #以sigmoid函数为激活函数
    #编译模型,损失函数为binary_crossentropy,用adam法求解
    model.compile(loss='mean_squared_error', optimizer='adam')
    
    model.fit(x_train, y_train, nb_epoch = 100, batch_size = 8) #训练模型
    model.save_weights('net.model') #保存模型参数
    
    inputfile2='gg.xls' #预测数据
    pre = pd.read_excel(inputfile2)                  
    
    pre_mean = data_mean[0:120]
    pre_std = pre.std()
    pre1 = (pre-pre_mean)/5  #数据标准化
    
    pre2 = pre1.iloc[:,0:120].as_matrix() #预测样本特征                 
    r = pd.DataFrame(model.predict(pre2))
    rt=r*5+data_mean[120:140].as_matrix()
    print(rt.round(2))
    
    
    
    rt.to_excel('rt.xls') 
    
    #print(r.values@data_train.iloc[:,116:120].std().values+data_mean[116:120].as_matrix())
    
    
    
    a=list(df.index[0:-1])
    
    b=a[0]
    
    c= datetime.datetime.strptime(b,'%Y-%m-%d')
    
    d = date2num(c)
    
    
    c1=[d+i+1 for i in range(5)]
    c2=np.array([c1])
    
    r1=rt.values.flatten()
    r2=r1[0:4]
    for i in range(4):
    
        r3=r1[i*4+4:i*4+8]
        r2=row_stack((r2,r3))
    
    c3=column_stack((c2.T,r2))
    r5=DataFrame(c3)
    
    if len(c3) == 0:
        raise SystemExit
    
    fig, ax = plt.subplots()
    fig.subplots_adjust(bottom=0.2)
    
    #ax.xaxis.set_major_locator(mondays)
    #ax.xaxis.set_minor_locator(alldays)
    #ax.xaxis.set_major_formatter(mondayFormatter)
    #ax.xaxis.set_minor_formatter(dayFormatter)
    
    #plot_day_summary(ax, quotes, ticksize=3)
    candlestick_ohlc(ax, c3, width=0.6, colorup='r', colordown='g')
    
    ax.xaxis_date()
    ax.autoscale_view()
    plt.setp(plt.gca().get_xticklabels(), rotation=45, horizontalalignment='right')
    
    ax.grid(True)
    #plt.title('000002')
    plt.show()
  • 相关阅读:
    Android实战技巧之三十八:Handler使用中可能引发的内存泄漏
    android上FragmentTabHost实现自己定义Tab Indicator
    GSO/TSO/GRO等对VirtIO虚机的网络性能影响分析(by quqi99)
    经典开源作品
    @在php中的作用
    .net开发中常用的第三方组件
    如何正确并完全安装Visual Studio 2015企业版本?
    TinyPNG---一个压缩PNG的神站
    asp.net MD5 加密
    PHP判断访问者手机移动端还是PC端的函数,亲测好用
  • 原文地址:https://www.cnblogs.com/smuxiaolei/p/8655727.html
Copyright © 2011-2022 走看看