zoukankan      html  css  js  c++  java
  • 跳台阶问题(递归、动态规则、变态跳台阶)

    题目:一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法。

     分析:青蛙每次只有一阶或者两阶两种跳法,那么:
    • 假设第一次跳的是一阶,那么剩下的n-1个台阶,跳法是f(n-1)
    • 假设第一次跳的是两阶,那么剩下的n-2个台阶,跳法是f(n-2)
    • 由上面两种假设可得:f(n) = f(n-1) + f(n-2)
    • 由实际情况可知:f(1) = 1,f(2) = 2
    • 最终得出的是一个斐波那契数列:
                     |  1,n = 1
    f(n)   =       |  2, n = 2
                     |  f(n-1) + f(n -2), n >2

    递归方法实现

    这种方法是最低级的做法,有很多重复计算,效率很低。
    int jumpFloor(int n)
    {
        if (n <= 0)
            return 0;
        if (n <= 2)
            return n;
        return jumpFloor(n - 1) + jumpFloor(n - 2);
    }

    动态规则实现

    这种方法利用斐波那契数列从下往上算,避免重复计算,提高效率。
    int f(int n)
    {
        if (n <= 2) return n;
        int f = 1;
        int g = 1;
        while (n--)
        {
            g = g + f;
            f = g - f;
        }
        return f;
    }

    拓展:变态跳台阶问题

    题目:一个台阶总共有n级,如果一次可以跳1级,也可以跳2级......它也可以跳上n级。此时该青蛙跳上一个n级的台阶总共有多少种跳法?
     
    分析:用f(n)表示青蛙跳上n阶台阶的跳法数,设定f(0) = 1;
    当n = 1 时,只有一种跳的方式,一阶跳,f(1) = 1
    当n = 2 时,有两种跳的方式,一阶跳和两阶跳,f(2) = f(1) + f(0) = 2
    当n = 3 时,有三种跳的方式,第一次跳出一阶后,后面还有f(3-1)中跳法; 第一次跳出二阶后,后面还有f(3-2)中跳法;第一次跳出三阶后,后面还有f(3-3)中跳法,f(3) = f(2) + f(1) + f(0) = 4
    当n = n 时,第一次跳出一阶后,后面还有f(n-1)中跳法; 第一次跳出二阶后,后面还有f(n-2)中跳法......第一次跳出n阶后,后面还有 f(n-n)中跳法,即:
    f(n) = f(n-1) + f(n-2) + f(n-3) + ... + f(n-n) = f(0) + f(1) + f(2) + ... + f(n-1)
    又因为 f(n-1) = f(0) + f(2) + f(3) + ... + f(n-2)
    两式相减得:f(n) = 2 * f(n-1)    ( n >= 2)
                     |  0,n = 0
    f(n)   =       |  1, n = 1
                     |  2 * f(n-1) , n >= 2
     
    代码实现:
    int f(int n)
    {
        if (n <= 0)
            return 0;
        if (n == 1)
            return 1;
        int f = 1;
        for (int i = 2; i <= n; i++)
        {
            f = 2 * f;
        }
        return f;
    }
     
  • 相关阅读:
    tolua总结(二)
    convirt管理端离线安装
    c++运用backtrace追踪函数调用的堆栈
    不知道自己适不适合作程序员
    这次六级又没过
    我也有blog了,呵呵!
    代理 XP”组件已作为此服务器安全配置的一部分被关闭。系统管理员可以使用 sp_configure 来启用“代理 XP”。
    SQLServer中的GROUPING,ROLLUP和CUBE
    android studio ndk 环境配置成eclipse模式
    寄存器小记
  • 原文地址:https://www.cnblogs.com/evenleee/p/8474465.html
Copyright © 2011-2022 走看看