zoukankan      html  css  js  c++  java
  • HDU 1134 卡特兰数 大数乘法除法

    Problem Description
    This is a small but ancient game. You are supposed to write down the numbers 1, 2, 3, ... , 2n - 1, 2n consecutively in clockwise order on the ground to form a circle, and then, to draw some straight line segments to connect them into number pairs. Every number must be connected to exactly one another. And, no two segments are allowed to intersect.

    It's still a simple game, isn't it? But after you've written down the 2n numbers, can you tell me in how many different ways can you connect the numbers into pairs? Life is harder, right?
     
    Input
    Each line of the input file will be a single positive number n, except the last line, which is a number -1. You may assume that 1 <= n <= 100.
     
    Output
    For each n, print in a single line the number of ways to connect the 2n numbers into pairs.
     
    Sample Input
    2 3 -1
     
    Sample Output
    2 5
     


    #include <stdio.h>
    #include <string.h>
    #include <iostream>
    using namespace std;
    int n;
    #define BASE 10000
    #define UNIT 4
    #define FORMAT "%04d"
    
    class BigNum{
    public:
    	int a[20];
    	int length;
    	BigNum(const int k){ //用小于BASE的k初始化大数
    		memset(a, 0, sizeof(a));
    		a[0] = k;
    		length = 1;
    	}
    	BigNum(){
    		memset(a, 0, sizeof(a));
    		length = 0;
    	}
    	BigNum operator * (const BigNum & B){
    		BigNum ans;
    		int i,j,up=0,num;
    		for(i=0; i<length; i++){
    			up = 0; //每次循环都要初始化为0
    			for(j=0; j<B.length; j++){
    				num = up + a[i] * B.a[j] + ans.a[i+j];
    				up = num / BASE;
    				num = num % BASE;
    			//	cout << num << endl;
    				ans.a[i+j] = num;
    			}
    		//	cout << up << endl;
    			if(up > 0)
    				ans.a[i+j] = up;
    		}
    		ans.length = i+j;
    		while(ans.a[ans.length -1] == 0 && ans.length > 1)
    			ans.length--;
    		return ans;
    	}
    	BigNum operator /(const int & k) const{  // k < BASE, 对此题适用
     		BigNum ans;
    		int down=0,i,num;
    		for(i=length-1; i>=0; i--){
    			num = ( (down * BASE) + a[i] ) / k;
    			down =  ( (down * BASE) + a[i] ) % k;
    			ans.a[i] = num;
    		}
    		ans.length = length;
    		while(ans.a[ans.length-1] == 0 && ans.length > 1)
    			ans.length -- ;
    		return ans;
    	}
    	void print(){
    		printf("%d", a[length-1]);
    		for(int i=length-2; i>=0; i--)
    			printf(FORMAT,a[i]);
    	}
    };
    
    //f(n) = C(2n,n)/(n+1)
    int main(){
    	BigNum nums[101];
    	nums[1] = BigNum(1);
    	nums[2] = BigNum(2);
    	nums[3] = BigNum(5);
    	for(int i=4; i<=100; i++){
    		nums[i] = nums[i-1] * (4*i-2)/(i+1);
    	}
    	int n;
    	while(scanf("%d", &n), n>0){
    		nums[n].print();
    		printf("
    ");
    	}
    	return 0;
    }


  • 相关阅读:
    es 基于match_phrase/fuzzy的模糊匹配原理及使用
    感谢帮助我的人们
    ps6—如何安装笔刷
    如何下载安装Photoshop cs 6(供新手)
    axure rp 使用心得
    信安协会作业2
    CentOS7下安装Docker
    20181330 王茜《网络对抗技术》 Exp8 Web综合
    20181330 王茜《网络对抗技术》Exp7 网络欺诈防范
    20181330 王茜《网络对抗技术》Exp6 MSF基础应用
  • 原文地址:https://www.cnblogs.com/snake-hand/p/3163000.html
Copyright © 2011-2022 走看看