zoukankan      html  css  js  c++  java
  • Poj2387--Til the Cows Come Home(Spfa)

    Til the Cows Come Home

    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 35672   Accepted: 12102

    Description

    Bessie is out in the field and wants to get back to the barn to get as much sleep as possible before Farmer John wakes her for the morning milking. Bessie needs her beauty sleep, so she wants to get back as quickly as possible.

    Farmer John's field has N (2 <= N <= 1000) landmarks in it, uniquely numbered 1..N. Landmark 1 is the barn; the apple tree grove in which Bessie stands all day is landmark N. Cows travel in the field using T (1 <= T <= 2000) bidirectional cow-trails of various lengths between the landmarks. Bessie is not confident of her navigation ability, so she always stays on a trail from its start to its end once she starts it.

    Given the trails between the landmarks, determine the minimum distance Bessie must walk to get back to the barn. It is guaranteed that some such route exists.

    Input

    * Line 1: Two integers: T and N

    * Lines 2..T+1: Each line describes a trail as three space-separated integers. The first two integers are the landmarks between which the trail travels. The third integer is the length of the trail, range 1..100.

    Output

    * Line 1: A single integer, the minimum distance that Bessie must travel to get from landmark N to landmark 1.

    Sample Input

    5 5
    1 2 20
    2 3 30
    3 4 20
    4 5 20
    1 5 100

    Sample Output

    90

    Hint

    INPUT DETAILS:

    There are five landmarks.

    OUTPUT DETAILS:

    Bessie can get home by following trails 4, 3, 2, and 1.

    Source

    #include <queue>
    #include <cstdio>
    #include <cstring>
    #include <iostream>
    using namespace std;
    const int INF = 0x3f3f3f3f;
    int map[1010][1010], vis[1010], dis[1010];
    int t, n;
    void Spfa(int src)
    {
        memset(vis, 0, sizeof(vis));
        for(int i = 1; i <= n; i++)
            dis[i] = INF;
        dis[src] = 0;
        vis[src] = 1;
        queue<int> q;
        q.push(src);
        while(!q.empty())
        {
            int temp = q.front();
            q.pop();
            vis[temp] = 0;
            for(int i = 1; i <= n; i++)   //遍历每个节点 ; 
            {
                if(dis[i] > dis[temp] + map[temp][i])
                {
                    dis[i] = dis[temp] + map[temp][i];
                    if(!vis[i])
                    {
                        vis[i] = 1;
                        q.push(i);
                    }
                }
            }
        }
    }
    int main()
    {
        while(~scanf("%d %d", &t, &n))
        {
            int a, b, c, i, j;
            for(i = 1; i <= n; i++)
                for(j = 1; j <= n; j++)
                    map[i][j]=(i==j?0:INF);
            for(i = 1; i <= t; i++)
            {
                scanf("%d %d %d", &a, &b, &c);
                if(map[a][b] > c)
                    map[a][b] = map[b][a] =c;
            }
            Spfa(1);
            printf("%d
    ", dis[n]);
        }
        return 0;    
    }  
     1 #include <cstdio>
     2 #include <cstring>
     3 #include <iostream>
     4 using namespace std;
     5 const int INF = 0x3f3f3f3f; 
     6 int dis[1010], vis[1010], map[1010][1010];
     7 int n, t;
     8 void Dijkstra(int src)
     9 {
    10     int i, j;
    11     memset(vis, 0, sizeof(vis));
    12     for(i = 1; i <= n; i++)
    13         dis[i] = map[src][i];
    14     vis[src] = 1;
    15     for(i = 1; i < n; i++)
    16     {
    17         int temp, min = INF;
    18         for(j = 1; j <= n; j++)
    19         {
    20             if(dis[j] < min && !vis[j])   //未标记的通过循环; 
    21             {
    22                 temp = j;
    23                 min = dis[j]; 
    24             } 
    25         }
    26         vis[temp] = 1;
    27         for(j = 1; j <= n; j++)          //松弛操作; 
    28         {
    29             if(dis[j] > dis[temp] + map[temp][j])
    30                 dis[j] = dis[temp] + map[temp][j]; 
    31         }
    32     }
    33 }
    34 int main()
    35 {
    36     while(~scanf("%d %d", &t, &n))
    37     {
    38         int a, b, c;
    39         for(int i = 1; i <= n; i++)
    40             for(int j = 1; j <= n; j++)
    41                 map[i][j]=(i==j?0:INF);
    42         for(int i = 1; i <= t; i++)
    43         {
    44             scanf("%d %d %d", &a, &b, &c);
    45                 if(map[a][b] > c)
    46                     map[a][b] = map[b][a] = c;
    47         }
    48         Dijkstra(1);
    49         printf("%d
    ", dis[n]);
    50     }
    51     return 0;
    52 } 
    Dijkstra
  • 相关阅读:
    「七天自制PHP框架」第四天:模型关联
    「七天自制PHP框架」第三天:PHP实现的设计模式
    「七天自制PHP框架」第二天:模型与数据库
    一个例子简要说明include和require的区别
    解读Laravel,看PHP如何实现Facade?
    Laravel是怎么实现autoload的?
    Laravel表单提交
    Laravel的console使用方法
    PHP控制反转(IOC)和依赖注入(DI)
    PHP解耦的三重境界(浅谈服务容器)
  • 原文地址:https://www.cnblogs.com/soTired/p/4717731.html
Copyright © 2011-2022 走看看