zoukankan      html  css  js  c++  java
  • poj2135--Farm Tour(最小费用最大流)

    Farm Tour
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 14219   Accepted: 5421

    Description

    When FJ's friends visit him on the farm, he likes to show them around. His farm comprises N (1 <= N <= 1000) fields numbered 1..N, the first of which contains his house and the Nth of which contains the big barn. A total M (1 <= M <= 10000) paths that connect the fields in various ways. Each path connects two different fields and has a nonzero length smaller than 35,000. 

    To show off his farm in the best way, he walks a tour that starts at his house, potentially travels through some fields, and ends at the barn. Later, he returns (potentially through some fields) back to his house again. 

    He wants his tour to be as short as possible, however he doesn't want to walk on any given path more than once. Calculate the shortest tour possible. FJ is sure that some tour exists for any given farm.

    Input

    * Line 1: Two space-separated integers: N and M. 

    * Lines 2..M+1: Three space-separated integers that define a path: The starting field, the end field, and the path's length. 

    Output

    A single line containing the length of the shortest tour. 

    Sample Input

    4 5
    1 2 1
    2 3 1
    3 4 1
    1 3 2
    2 4 2

    Sample Output

    6
    

    Source

     
    农场主有N块地, 求从房子出发到某地,  再回到房子, 所用最短路程(每条边走一次)。 建源点和汇点 跑最短路。
    数组开小为毛判T;
    #include <queue>
    #include <cstdio>
    #include <cstring>
    using namespace std;
    typedef int Type;
    const int MAXNODE = 1010;
    const int MAXEDGE = 10010;
    const int INF = 0x3f3f3f3f;
    struct Edge
    {
        int u, v, next;
        Type cap, flow, cost;
        Edge() {}
        Edge(int u, int v, Type cap, Type flow, Type cost, int next):  u(u), v(v), cap(cap), flow(flow), cost(cost), next(next) {}
    };
    struct MXMF
    {
        int n, m, s, t;
        Edge edges[MAXEDGE*2];
        int head[MAXNODE];
        int p[MAXNODE];
        Type dis[MAXNODE];
        Type a[MAXNODE];
        bool vis[MAXNODE];
        void init(int n)
        {
            this->n=n;
            memset(head, -1, sizeof(head));
            m = 0;
        }
        void addEdge(int u, int v, Type cap, Type cost)
        {
            edges[m]=Edge(u, v, cap, 0, cost, head[u]);
            head[u]=m++;
            edges[m]=Edge(v, u, cap, 0, cost, head[v]);
            head[v]=m++;
        }
        bool BellmanFord(int s, int t, Type &flow, Type &cost)
        {
            for(int i=0; i<n; i++) dis[i]=INF;    //0 -> n+1;
            memset(vis, 0, sizeof(vis));
            dis[s]=0; vis[s]=true; p[s]=0; a[s]=INF;
            queue<int> Q;
            Q.push(s); 
            
            while(!Q.empty())
            {
                int u=Q.front(); Q.pop();
                vis[u]=false;
                for(int i=head[u]; i!=-1; i=edges[i].next)
                {
                    Edge &e=edges[i];
                    if(e.cap>e.flow && dis[e.v]>dis[u]+e.cost)
                    {
                        dis[e.v]=dis[u]+e.cost;
                        p[e.v]=i;
                        a[e.v]=min(a[u], e.cap-e.flow);
                        if(!vis[e.v]) { Q.push(e.v); vis[e.v]=true;}
                    }
                }
            }
            if(dis[t]== INF) return false;
            flow += a[t];
            cost += a[t]*dis[t];
            int u=t;
            while(u != s)
            {
                edges[p[u]].flow += a[t];
                edges[p[u] ^ 1].cost = -edges[p[u] ^ 1].cost;
                u = edges[p[u]].u;
            }
            return true;
        }
        Type minCost(int s, int t)
        {
            this->s=s; this->t;
            Type flow=0, cost=0;
            while(BellmanFord(s, t, flow, cost));
            return cost;
        }
    } mcmf; 
    
    int n, m;
    
    void init()
    {
        int source=1, sink=n;   //imp; 
        mcmf.init(n+2);
        int u, v, c;
        for(int i=0; i< m; i++)
        {
            scanf("%d%d%d", &u, &v, &c);
            mcmf.addEdge(u, v, 1, c);
        }
        mcmf.addEdge(0, source, 2, 0);
        mcmf.addEdge(sink, n+1, 2, 0);
        printf("%d
    ", mcmf.minCost(0, n+1));
    }
    int main()
    {
        while(scanf("%d%d", &n, &m) != EOF){
            init();
        }
        return 0;
    }
     
  • 相关阅读:
    CentOS-Docker安装RabbitMQ(单点)
    CentOS-关闭防火墙和禁用安全策略
    CentOS-Docker搭建VeryNginx
    CentOS7-磁盘扩容(LVM-非空目录拓展卷空间大小)
    (六十二)Activity的启动模式(转载自http://blog.csdn.net/android_tutor/article/details/6310015)
    (一)关于SWT程序的基本架构,如何使用控件以及使用Image,Font,Color等图形资源内容
    (六十一)eclipse老是卡顿的问题解决办法
    (六十一)Activity启动模式 及 Intent Flags 与 栈 的关联分析(转载自:http://blog.csdn.net/vipzjyno1/article/details/25463457)
    (六十)工具方法---隐藏软键盘
    iOS 语音朗读
  • 原文地址:https://www.cnblogs.com/soTired/p/5312455.html
Copyright © 2011-2022 走看看