zoukankan      html  css  js  c++  java
  • zoj3946--Highway Project

    Highway Project

    Time Limit: 2 Seconds      Memory Limit: 65536 KB

    Edward, the emperor of the Marjar Empire, wants to build some bidirectional highways so that he can reach other cities from the capital as fast as possible. Thus, he proposed the highway project.

    The Marjar Empire has N cities (including the capital), indexed from 0 to N - 1 (the capital is 0) and there are M highways can be built. Building the i-th highway costs Ci dollars. It takes Di minutes to travel between city Xi and Yi on the i-th highway.

    Edward wants to find a construction plan with minimal total time needed to reach other cities from the capital, i.e. the sum of minimal time needed to travel from the capital to city i (1 ≤ iN). Among all feasible plans, Edward wants to select the plan with minimal cost. Please help him to finish this task.

    Input

    There are multiple test cases. The first line of input contains an integer T indicating the number of test cases. For each test case:

    The first contains two integers N, M (1 ≤ N, M ≤ 105).

    Then followed by M lines, each line contains four integers Xi, Yi, Di, Ci (0 ≤ Xi, Yi < N, 0 < Di, Ci < 105).

    Output

    For each test case, output two integers indicating the minimal total time and the minimal cost for the highway project when the total time is minimized.

    Sample Input

    2
    4 5
    0 3 1 1
    0 1 1 1
    0 2 10 10
    2 1 1 1
    2 3 1 2
    4 5
    0 3 1 1
    0 1 1 1
    0 2 10 10
    2 1 2 1
    2 3 1 2
    

    Sample Output

    4 3
    4 4
    

    Author: Lu, Yi
    Source: The 13th Zhejiang Provincial Collegiate Programming Contest

    #include <cstdio>
    #include <queue>
    #include <cstring>
    #define N 110000*10
    typedef long long LL;
    
    using namespace std;
    
    LL tt[N], cost[N];
    const LL INF= 0x3f3f3f3f;
    int n, m;
    struct Edge
    {
        int v, next;
        LL t, c;
        Edge()
        {
        }
        Edge(int v, int next, LL t, LL c): v(v), next(next), t(t), c(c){
        } 
        
    }p[N];
    int cnt, vis[N], head[N];
    void addEdge(int u, int v, LL t, LL c)
    {
        /*p[cnt].v = v;  
        p[cnt].t = t;  
        p[cnt].c = c;  
        p[cnt].next = head[u];  
        head[u] = cnt++; */
        p[cnt]=Edge(v, head[u], t, c);
        head[u]= cnt++;
    }
    void spfa()
    {
        memset(vis, 0, sizeof(vis));
        memset(tt, INF, sizeof(tt));    
        memset(cost, INF, sizeof(cost));
        queue<int> q;
        q.push(0);
        vis[0]=1;
        cost[0]= tt[0]= 0;
        while(!q.empty())
        {
            int out= q.front(); q.pop();
            vis[out]= 0;
            for(int i=head[out]; i+1; i= p[i].next) 
            {
                if(tt[out]+p[i].t <= tt[p[i].v])
                {
                    if(tt[out]+p[i].t < tt[p[i].v])
                    {
                        tt[p[i].v]= tt[out]+ p[i].t;
                        cost[p[i].v]= p[i].c;
                        if(!vis[p[i].v])
                        {
                            q.push(p[i].v);
                            vis[p[i].v]= 1;
                        }
                    }
                    else if(cost[p[i].v]>p[i].c) //时间相同考虑费用小的边  
                    {
                        if(!vis[p[i].v])
                        {
                            q.push(p[i].v);
                            vis[p[i].v]=1;
                        }
                        cost[p[i].v]= p[i].c;
                    }
                }
            
            }
        }
    }
    
    int main()
    {
        int Q; 
        scanf("%d", &Q);
        while(Q--)
        {
            memset(head, -1, sizeof(head));
            cnt= 0; 
            scanf("%d%d", &n, &m);
            for(int i=0; i< m; i++)
            {
                int a, b, c, t;
                scanf("%d%d%d%d", &a, &b, &c, &t);
                addEdge(a, b, c, t);
                addEdge(b, a, c, t); 
            }
            spfa();
            LL d=0, c=0;
            for(int i=0; i< n; i++)
            {
                d += tt[i];
                c += cost[i];
            }
            printf("%lld %lld
    ", d, c);
        }
        return 0;
    }
  • 相关阅读:
    C#下如何用NPlot绘制期货股票K线图(3):设计要显示的股票价格图表窗口并定义相应类的成员及函数
    C#下如何用NPlot绘制期货股票K线图(2):读取数据文件让K线图自动更新
    C#下如何用NPlot绘制期货股票K线图(1)?
    freemarker 常见问题
    关于Bootstrap table的回调onLoadSuccess()和onPostBody()使用小结
    mybatis 联表查询
    用mysql存储过程代替递归查询
    MYSQL 级联 添加外键
    IntelliJ Idea 常用快捷键列表
    MySQL大数据量分页查询方法及其优化
  • 原文地址:https://www.cnblogs.com/soTired/p/5433080.html
Copyright © 2011-2022 走看看