zoukankan      html  css  js  c++  java
  • POJ 1258 Agri-Net(最小生成树)

    Agri-Net
    Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%I64d & %I64u

    Description

    Farmer John has been elected mayor of his town! One of his campaign promises was to bring internet connectivity to all farms in the area. He needs your help, of course. 
    Farmer John ordered a high speed connection for his farm and is going to share his connectivity with the other farmers. To minimize cost, he wants to lay the minimum amount of optical fiber to connect his farm to all the other farms. 
    Given a list of how much fiber it takes to connect each pair of farms, you must find the minimum amount of fiber needed to connect them all together. Each farm must connect to some other farm such that a packet can flow from any one farm to any other farm. 
    The distance between any two farms will not exceed 100,000. 

    Input

    The input includes several cases. For each case, the first line contains the number of farms, N (3 <= N <= 100). The following lines contain the N x N conectivity matrix, where each element shows the distance from on farm to another. Logically, they are N lines of N space-separated integers. Physically, they are limited in length to 80 characters, so some lines continue onto others. Of course, the diagonal will be 0, since the distance from farm i to itself is not interesting for this problem.

    Output

    For each case, output a single integer length that is the sum of the minimum length of fiber required to connect the entire set of farms.

    Sample Input

    4
    0 4 9 21
    4 0 8 17
    9 8 0 16
    21 17 16 0
    

    Sample Output

    28

    裸最小生成树 可以用kruskal和prim来完成

    kruskal
    #include<cstdio>
    #include<iostream>
    #include<cstring>
    #include<algorithm>
    using namespace std;
    int n,coun;
    struct road
    {
        int f,t;
        int w;
    };
    road vil[10000+10];
    int fa[10000+10];
    int cmp(road a ,road b) {return a.w<b.w;}
    int find(int x)
    {
        return fa[x]==x?x:fa[x]=find(fa[x]);
    }
    int Kruskal()
    {
        int ans=0;
        for(int i=0;i<coun;i++) fa[i]=i;
        sort(vil,vil+coun,cmp);
        for(int i=0;i<coun;i++)
        {
            int x=find(vil[i].f);
            int y=find(vil[i].t);
            if(x!=y)
            {
                fa[x]=y;
                ans+=vil[i].w;
            }
        }
        return ans;
    }
    int main()
    {
    
        int i,j;
        while(scanf("%d",&n)!=EOF)
        {
            coun=0;
            for(i=1;i<=n;i++)
            {
                for(j=1;j<=n;j++)
                {
                    int waste;
                    scanf("%d",&waste);
                    if(i<j)
                    {
                        vil[coun].f=i;
                        vil[coun].t=j;
                        vil[coun].w=waste;
                        coun++;
                    }
                }
            }
            int ans=Kruskal();
            printf("%d
    ",ans);
        }
        return  0;
    }
    View Code

     prim

    (网上贴来的代码 感觉明显kruskal比较简单粗暴啊)

    #include<iostream>
    using namespace std;
    
    const int inf=100001;      //无限大
    
    int n;   //农场数量
    int dist[101][101];
    
    int prim(void)
    {
        int s=1;
        int m=1;
        bool u[101]={false};
        u[s]=true;
    
        int min_w;
        int prim_w=0;
        int point;
        int low_dis[101];
    
        /*Initial*/
    
        for(int i=1;i<=n;i++)
            low_dis[i]=inf;
    
        /*Prim Algorithm*/
    
        while(true)
        {
            if(m==n)
                break;
            min_w=inf;
            for(int i=2;i<=n;i++)
            {
                if(!u[i] && low_dis[i]>dist[s][i])
                    low_dis[i] = dist[s][i];
                if(!u[i] && min_w>low_dis[i])
                {
                    min_w = low_dis[i];
                    point=i;
                }
            }
            s=point;
            u[s]=true;
            prim_w+=min_w;
            m++;
        }
        return prim_w;
    }
    
    int main(void)
    {
        while(cin>>n)
        {
            /*Input*/
    
            for(int i=1;i<=n;i++)
                for(int j=1;j<=n;j++)
                    cin>>dist[i][j];
    
            /*Prim Algorithm & Output*/
    
            cout<<prim()<<endl;
        }
        return 0;
    }
    View Code
  • 相关阅读:
    SCP测试服务器的上行/下行带宽
    React-Native 之 GD (四)使用通知方式隐藏或显示TabBar
    React-Native 之 GD (五)属性声明和属性确认 及 占位图
    React-Native 之 GD (三)近半小时热门
    React-Native 之 GD (二)自定义共用导航栏样式
    React-Native 之 GD (一)目录结构与第三方框架使用与主题框架搭建
    React Native商城项目实战16
    React Native商城项目实战15
    React Native商城项目实战14
    React Native商城项目实战13
  • 原文地址:https://www.cnblogs.com/sola1994/p/4134873.html
Copyright © 2011-2022 走看看