zoukankan      html  css  js  c++  java
  • hdu 1016 Prime Ring Problem(dfs)

    Prime Ring Problem

    Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 28391    Accepted Submission(s): 12644


    Problem Description
    A ring is compose of n circles as shown in diagram. Put natural number 1, 2, ..., n into each circle separately, and the sum of numbers in two adjacent circles should be a prime.

    Note: the number of first circle should always be 1.

     
    Input
    n (0 < n < 20).
     
    Output
    The output format is shown as sample below. Each row represents a series of circle numbers in the ring beginning from 1 clockwisely and anticlockwisely. The order of numbers must satisfy the above requirements. Print solutions in lexicographical order.

    You are to write a program that completes above process.

    Print a blank line after each case.
     
    Sample Input
    6 8
     
    Sample Output
    Case 1: 1 4 3 2 5 6 1 6 5 2 3 4 Case 2: 1 2 3 8 5 6 7 4 1 2 5 8 3 4 7 6 1 4 7 6 5 8 3 2 1 6 7 4 3 8 5 2
     
    重新做了一遍素数环 没想到还是出了点小问题
     
    从第一个数开始dfs 按字典序把符合条件的数计入seq数组
    再通过回溯 把所有的情况都遍历并输出
    (n==1的情况数据中不会出现 判不判断都可以)
     
    #include<cmath>
    #include<cstdio>
    #include<cstring>
    #include<iostream>
    #include<algorithm>
    using namespace std;
    int n;
    int vis[50];
    int seq[50];
    int prime[100];
    bool okp(int x)
    {
      int i;
      for(i=2;i<=sqrt(x);i++)
      {
        if(x%i==0) break;
      }
      if(i>sqrt(x)) return true;
      return false;
    }
    void prim()
    {
      memset(prime,0,sizeof(prime));
      int i;
      for(i=2;i<=50;i++)
      {
        if(prime[i]==0)
        {
          if(okp(i))
            prime[i]=1;
        }
        int k=i,tc=2;
        while(k*tc<=50)
        {
          prime[k*tc]=2;
          tc++;
        }
      }
    }
    void dfs(int x)
    {
      int i;
      if(x>n) return ;
      if(x==n&&prime[seq[x]+1]==1)
      {
        for(i=1;i<=n;i++)
        {
          printf("%d",seq[i]);
          printf("%c",i==n?'
    ':' ');
        }
      }
      else
      {
        for(i=2;i<=n;i++)
        {
          if(vis[i]==0&&prime[seq[x]+i]==1)
          {
            vis[i]=1;
            seq[x+1]=i;
            dfs(x+1);
            vis[i]=0;
          }
        }
      }
    }
    int main()
    {
      int cas=1,i,j;
      prim();//筛法求素数
      while(scanf("%d",&n)!=EOF)
      {
        printf("Case %d:
    ",cas++);
        //if(n==1) continue;  //测试数据中不会出现n==1
        memset(vis,0,sizeof(vis));
        seq[1]=1;
        vis[1]=1;    
        dfs(1);
        printf("
    ");
      }
      return 0;
    }
    View Code
  • 相关阅读:
    【Project Euler】1 第一题
    【OpenCV归纳】5 图像处理
    【OpenCV归纳】4 关于HighGUI
    【OpenCV归纳】3 在实例中学习简单函数以及数据读写
    【OpenCV归纳】2 读写视频
    【OpenCV归纳】1 体验OpenCV
    【SICP练习】27 练习1.33
    【SICP练习】26 练习1.32
    【SICP练习】25 练习1.31
    【SICP练习】24 练习1.30
  • 原文地址:https://www.cnblogs.com/sola1994/p/4153395.html
Copyright © 2011-2022 走看看