0 1 2 3 4 5 6 7 8 9 10 components 9 0 0 1 2 3 4 5 6 7 8 0 9 components 3 4 0 1 2 4 4 5 6 7 8 0 8 components 5 8 0 1 2 4 4 8 6 7 8 0 7 components 7 2 0 1 2 4 4 8 6 2 8 0 6 components 2 1 0 1 1 4 4 8 6 2 8 0 5 components 5 7 0 1 1 4 4 8 6 2 1 0 4 components 0 3 4 1 1 4 4 8 6 2 1 0 3 components 4 2 4 1 1 4 1 8 6 2 1 0 2 components
森林图:
操作次数分析:
find函数每次访问数组次数是1 + 2 * depth
connected函数每次调用两次find函数
union函数每次调用两次find函数(如果两个连接点不在同一个树的话,则多一次数组访问)
public static void main(String[] args) { //initialize N components int N = StdIn.readInt(); UFQuickUnion uf = new UFQuickUnion(N); StdOut.println(uf); while(!StdIn.isEmpty()) { int p = StdIn.readInt(); int q = StdIn.readInt(); if(uf.connected(p, q)) {//ignore if connected StdOut.println(p + " " + q + " is connected"); continue; } uf.union(p, q);//connect p and q StdOut.println(p + " " + q); StdOut.println(uf); } }
对于这个client,对每个数据对,都调用一次connected函数和union函数。
下边对数组访问次数进行分析:
9 0:9和0的深度都为0,find访问数组次数为1,connected为2 * 1, union为2 * 1 + 1,总的为2 * 1 + 2 * 1 + 1
3 4:3和4的深度都为0,find访问数组次数为1,connected为2 * 1, union为2 * 1 + 1,总的为2 * 1 + 2 * 1 + 1
5 8:5和8的深度都为0,find访问数组次数为1,connected为2 * 1, union为2 * 1 + 1,总的为2 * 1 + 2 * 1 + 1
7 2:7和2的深度都为0,find访问数组次数为1,connected为2 * 1, union为2 * 1 + 1,总的为2 * 1 + 2 * 1 + 1
2 1:2和1的深度都为0,find访问数组次数为1,connected为2 * 1, union为2 * 1 + 1,总的为2 * 1 + 2 * 1 + 1
5 7:5的深度为1,7的深度为2。find访问数组次数分别为3、5,connected为3 + 5, union为3 + 5 + 1,总的为3 + 5 +3 + 5 + 1
0 3:0的深度为0,3的深度为1。find访问数组次数分别为1、3,connected为1 + 3, union为1 + 3 + 1,总的为1 + 3 +1 + 3 + 1
4 2:4的深度为0,2的深度为1。find访问数组次数分别为1、3,connected为1 + 3, union为1 + 3 + 1,总的为1 + 3 +1 + 3 + 1
源代码:
package com.qiusongde; import edu.princeton.cs.algs4.StdIn; import edu.princeton.cs.algs4.StdOut; public class UFQuickUnion { private int[] id;//save the site's parent link(site indexed) private int count;//number of components public UFQuickUnion(int n) { count = n; id = new int[n]; for(int i = 0; i < n; i++) id[i] = i; } public int count() { return count; } public boolean connected(int p, int q) { return find(p) == find(q); } public int find(int p) { //find root //id[p] save the parent of p while(p != id[p]) p = id[p]; return p; } public void union(int p, int q) { int pRoot = find(p);//find pRoot int qRoot = find(q);//find qRoot if(pRoot == qRoot) return; id[pRoot] = qRoot; count--; } @Override public String toString() { String s = ""; for(int i = 0; i < id.length; i++) { s += id[i] + " "; } s += " " + count + " components"; return s; } public static void main(String[] args) { //initialize N components int N = StdIn.readInt(); UFQuickUnion uf = new UFQuickUnion(N); StdOut.println(uf); while(!StdIn.isEmpty()) { int p = StdIn.readInt(); int q = StdIn.readInt(); if(uf.connected(p, q)) {//ignore if connected StdOut.println(p + " " + q + " is connected"); continue; } uf.union(p, q);//connect p and q StdOut.println(p + " " + q); StdOut.println(uf); } } }